Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature Patches

Marco Manzi     Delio Vicini1,2     Matthias Zwicker    
University of Bern
Computer Graphics Forum (Proceedings of Eurographics), 2016
Teaser

Our regularized reconstruction for gradient-domain rendering obtains a high-quality image from a noisy base image, the sampled gradients, and auxiliary features (left). We (right) achieve significantly better images than standard L1 reconstruction (middle). The depicted features are, from left to right, the vertical and horizontal gradients, normals, texture values, positions and ambient occlusion values.

Abstract

We present a novel algorithm to reconstruct high-quality images from sampled pixels and gradients in gradient-domain rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per-pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.

Downloads & resources

Text Reference Copy to clipboard

Marco Manzi, Delio Vicini, Matthias Zwicker. Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature Patches. Computer Graphics Forum (Proceedings of Eurographics), 2016.

BibTex Reference Copy to clipboard

@article {Manzi2016denoise,
	author = {Manzi, Marco and Vicini, Delio and Zwicker, Matthias},
	title = {Regularizing Image Reconstruction for Gradient-Domain Rendering with Feature Patches},
	journal = {Computer Graphics Forum (Proceedings of Eurographics},
	volume = {35},
	number = {2},
	issn = {1467-8659},
	url = {http://dx.doi.org/10.1111/cgf.12829},
	doi = {10.1111/cgf.12829},
	pages = {263--273},
	keywords = {Categories and Subject Descriptors (according to ACM CCS), I.3.3 [Computer Graphics]: Picture/Image Generation�Display Algorithms},
	year = {2016},
}