
Image Filtering using Halide and a new

Denoising Algorithm for Gradient-Domain

Rendering

Bachelorarbeit

der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Delio Vicini

2015

Leiter der Arbeit:
Prof Dr. Matthias Zwicker

Institut für Informatik und angewandte Mathematik

Abstract

In this thesis, we implemented two state-of-the-art denoising algorithms us-
ing Halide [RKAP+12]. Halide is a domain-specific programming language for
high performance image processing. We implemented both ”Robust Denois-
ing using Feature and Color information” [RMZ13] and ”Dual-Domain Image
Denoising” [KZ15] using Halide. Our implementations on the GPU are faster
than the preexisting code provided by the respective authors. Furthermore,
we present a new denoising algorithm for gradient-domain rendering [LKL+13].
Gradient-domain rendering algorithms compute not only a Monte Carlo esti-
mate of the image itself, but also of its finite difference gradients. The final image
is then reconstructed by solving a screened Poisson equation. Our denoising al-
gorithm extends the Poisson problem by adding regularization constraints based
on local feature patches. We also present an efficient implementation of our al-
gorithm using CUDA and compare it to the existing biased L1-reconstruction
for gradient-domain rendering, which we outperform by a significant factor.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and contributions . 2
1.3 Thesis structure . 3

2 Background 4
2.1 Mathematics . 4

2.1.1 Statistical tools . 4
2.1.2 Discrete Fourier transform 5

2.2 Monte Carlo rendering . 7
2.3 Halide . 9

3 Robust Denoising using Feature and Color Information 12
3.1 Overview . 12
3.2 Non-local means color weights . 14

3.2.1 The non-local means filter 14
3.2.2 Non-uniform variance . 15
3.2.3 Patch-wise weight computation 16
3.2.4 Symmetric weights . 17
3.2.5 Variance estimation and two-buffer filtering 18

3.3 Cross-bilateral feature weights . 20
3.3.1 Feature prefiltering . 20
3.3.2 Feature weights . 20

3.4 Stein’s unbiased risk estimate . 22
3.4.1 Definition . 22
3.4.2 Application to RDFC . 22

3.5 The RDFC algorithm . 23
3.6 Implementation using Halide and results 25

4 Dual-Domain Image Denoising 29
4.1 Overview . 29
4.2 Dual-Domain Filtering . 30

4.2.1 Noise estimation in the spatial domain 30
4.2.2 Noise re-estimation in the frequency domain 31
4.2.3 Formulation as a guided filter 33

4.3 The DDID algorithm . 33
4.4 Implementation using Halide and results 36

CONTENTS iii

5 Denoising for Gradient-Domain Path Tracing 40
5.1 Overview . 40
5.2 Gradient-domain path tracing . 42
5.3 Denoising using subspace projections 46

5.3.1 Extending the Poisson problem by patch constraints . . . 46
5.3.2 Patch constraint weights 50
5.3.3 Error estimation using sparse error estimates 52
5.3.4 Implementation using CUDA 53

5.4 Results . 55

6 Conclusions 61
6.1 Working with Halide . 61
6.2 Denoising for gradient-domain rendering 62
6.3 Acknowledgments . 63

A Rader’s algorithm 64

List of Tables 66

List of Figures 66

Bibliography 67

Chapter 1

Introduction

1.1 Motivation

One major area of research in computer graphics and vision is the reconstruction
of data corrupted by noise. Noise can occur in many situations. Measurements
of a natural quantity can be corrupted by noise, but also results of numerical
simulations. In this thesis, we focus on denoising of images as an important
special case. Many techniques applicable to denoising of images can also be
used on other types of data.

Noisy images can occur in a variety of different contexts. The images pro-
duced by digital cameras in low-light situations typically suffer from noise. The
noise is produced by the image sensor of the camera, which cannot reliably mea-
sure the colors of the scene if there is not enough light available. An example of
this is given in Figure 1.1. Denoising algorithms can help to improve the qual-
ity of images tremendously. These algorithms can be applied after the image
has been captured, without adding additional cost to the production of digital
cameras.

Another application of denoising algorithms is in realistic rendering. Produc-
ing realistic images of artificial scenes has a wide range of applications, including
movies, games and visualizations. Computing realistic images is hard, since one
has to simulate how light is transported in a scene. The light in a scene can be

(a) Noisy image (b) Details

Figure 1.1: Example of noise produced by a digital camera in a low-light situa-
tion.

1.2. GOALS AND CONTRIBUTIONS 2

(a) Noisy image (b) Details

Figure 1.2: Example of noise produced by a Monte Carlo rendering algorithm.

reflected or refracted multiple times before it reaches the sensor of the virtual
camera. From a mathematical point of view, computing the light transport in
a scene amounts to solving an integral equation. The image produced by the
light in a scene can unfortunately not be computed in closed form.

Rendering algorithms can in general be divided into two categories: Biased
algorithms reduce the rendering time at the cost of accuracy. The resulting
images can look very realistic, even though they are not the result of a physically
correct light transport simulation. These algorithms typically require a skilled
artist to tweak many parameters to get convincing results. Nevertheless, they
are used very widely, as they can give good enough results in a short amount of
time. Another approach is taken by unbiased algorithms, which try to compute
the image by fully simulating the light transport in a scene. This has the
advantage, that parameter tweaking becomes less important and realistic scenes
can be created in less time. These algorithms however rely on Monte Carlo
methods and can take a very long time to converge to the true solution. Given
a limited computation time, the images produced by these algorithms can be
very noisy, as demonstrated in Figure 1.2.

Due to increasing computation power, there has been a steady shift to-
wards more physically correct rendering in many areas of computer graphics
applications.[ZJL+15] For offline rendering, it has become fairly popular, to
first compute a potentially noisy image using Monte Carlo methods and then
remove the noise in a post-processing step. This adds some bias to the rendered
results, but increases the overall image quality.

The filtering step is typically very fast compared to the rendering process
itself. This is important, since the filtering step should in the end accelerate the
whole rendering process. High performance is usually achieved by implementing
the filter to run in parallel on a graphics processing unit (GPU). All algorithms
presented in this thesis have thus been implemented to run on the GPU.

1.2 Goals and contributions

In the first part of this thesis, we implemented two different denoising algorithms
using the Halide [RKAP+12] programming language. Halide is a domain-specific
language, which allows the programmer to write very efficient image processing
code. Because the language is still fairly new, the amount of publicly available

1.3. THESIS STRUCTURE 3

source code is limited. Our goal was to evaluate how useful Halide is to im-
plement research level image filtering algorithms. The usefulness on one hand
depends on the achievable performance, but on the other hand also on the ease
of use of the language itself from a programmers point of view. One of Halide’s
goals is to allow the code both to be readable and optimized at the same time.

We first implemented the ”Robust Denoising using Feature and Color in-
formation” (RDFC) [RMZ13] algorithm. This filter is used to denoise images
created by Monte Carlo rendering techniques. We also implemented the ”Dual-
Domain Image Denoising” (DDID) [KZ15] algorithm. This second algorithm is
more general and is mostly suitable for denoising digital photographs.

In the second part of this thesis we present a new denoising algorithm for
gradient-domain rendering [LKL+13, MRK+14, MKA+15, KMA+15]. Gradient-
domain rendering algorithms have been introduced recently as a promising way
to speed up Monte Carlo rendering. These algorithms work by computing, ad-
ditionally to the conventional rendering process, image space gradients of the
output image. The final image is then computed by solving a screened Pois-
son equation. We originally intended to implement the Poisson reconstruction
using Halide, but then quickly discovered, that Halide does not provide all the
necessary operations to do so. Our denoising algorithm works by extending the
Poisson reconstruction by additional regularization constraints based on local
feature patches. In rendering, the term ”feature” refers to additional per-pixel
information about the scene accumulated during the rendering processes. In
short, our contributions are

• Fast implementations of RDFC and DDID using Halide. Our code out-
performs the existing implementations of these algorithms. We provide
both GPU and CPU schedules for our Halide code.

• A novel denoising algorithm for gradient-domain rendering, which im-
proves over the previous reconstructions in terms of empirical mean squared
error to the reference image. A fast implementation of the algorithm using
CUDA is also presented.

1.3 Thesis structure

In the second chapter of this thesis, a small overview over the required back-
ground is given. This includes a few mathematical definitions, a short section
on Monte Carlo rendering and an introduction to Halide. We assume the GPU
programming model to be familiar to the reader. In the third chapter, the
RDFC filter and its implementation using Halide are discussed. The fourth
chapter does the same thing for the DDID filter. The fifth chapter gives a short
overview of gradient-domain rendering and presents our new denoising algo-
rithm. We also discuss the efficient implementation using CUDA and compare
our algorithm to the existing reconstructions for gradient-domain rendering.

Chapter 2

Background

2.1 Mathematics

This section will introduce some basic mathematical concepts and definitions,
that will be used in the rest of this thesis. A knowledge of fundamental proba-
bility theory, linear algebra and analysis is assumed.

2.1.1 Statistical tools

Denoising of images is always estimation of unknown values from some random
input. The quality of an estimator X̂ of an unknown variable X can be measured
by the mean squared error (MSE)

MSE[X̂] = E[(X̂ −X)2] (2.1)

where E[. . .] denotes the expected value. Another often used measure is the
bias of an estimator, given as:

Bias[X̂] = E[X̂ −X] (2.2)

An estimator is called unbiased if Bias[X̂] = 0 and biased if Bias[X̂] 6= 0. By
expanding the definition of the MSE, we get the equality

MSE[X̂] = Bias[X̂]2 + Var[X̂] (2.3)

In denoising, the assumption is usually, that the noisy pixel value is an unbiased
estimate for the true pixel value. The goal of denoising algorithms is to compute
a new estimate with a lower MSE than the original estimate. The new estimate
should have a lower variance, at the cost of introducing some bias. The difficulty
is thus to compute an estimate, which balances bias and variance to get a low
MSE value. This is also called bias-variance trade-off.

In image denoising, the MSE of a filter can usually not analytically be de-
termined. An estimate for the true per-pixel MSE is the squared distance from
the denoised pixel to the reference pixel from a ground truth image. The per-
pixel MSE can then be averaged over the whole image in order to get one single
number, which quantifies the quality of a filter.

In rendering, we usually need to filter high dynamic range images, where
individual pixels can have values larger than 1. The standard empirical MSE

2.1. MATHEMATICS 5

is in this context often not optimal to measure the quality of a filter, since the
total error can be dominated by the error at a few bright pixels. This can for
example happen, if a filter accidentally removes a small, but very bright specular
highlight. A useful alternative error measure is the relative mean squared error
(RMSE) [RKZ12], which divides the per-pixel error by the magnitude of the
reference image. The per-pixel RMSE is defined in channel c at pixel p as

RMSEc(p) =
(Ic(p)− Îc(p))2

((I1(p) + I2(p) + I3(p))/3)2 + 10−3
, (2.4)

where I is the reference image and Î is the denoised image. Similar to the MSE,
the RMSE is averaged over the whole image. In this thesis, all measurements
of the quality of a filter are made using the RMSE.

2.1.2 Discrete Fourier transform

In many signal processing applications, including denoising, it is of interest, to
look at a signal from a frequency point of view. Understanding how a signal is
composed of low and high frequencies can be very useful for denoising. The dual-
domain image denoising algorithm relies on frequency domain noise estimation.
This section will therefore give a short overview of the discrete Fourier transform
(DFT) and define the terminology used later on.

It is a well known fact, that many periodic functions can be represented as a
series of sine and cosine functions. This is generalized to non-periodic functions
by the continuous Fourier transform. For an integrable function f : R→ C, its
Fourier transform f̂ : R→ C is defined as

f̂(t) =

∫ ∞
−∞

f(x)e−2πitxdx . (2.5)

The Fourier transform maps a function from the spatial domain to the fre-
quency domain. In the frequency domain, the value f̂(t) is the contribution of
frequency t to the function f . The Fourier transform is invertible under certain
conditions on the underlying function space. We will not go into the details of
these conditions, as they do not matter for our applications.

It turns out, that discretizing a function and then transforming it to the
frequency domain is equivalent to first transforming to frequency domain and
then discretizing. The discrete frequency domain coefficients of a function can
be computed from the discretized function and do not require the continuous
function to be known. For a discrete signal x = (x0, . . . , xN−1), the discrete
Fourier transform is defined as

Xk =

N−1∑
n=0

xne
−2πikn/N , (2.6)

where k ∈ {0, . . . , N − 1}. The DFT is invertible and the inverse transform is
given as

xk =
1

N

N−1∑
n=0

Xne
2πikn/N . (2.7)

2.1. MATHEMATICS 6

The DFT is a change of basis from the standard basis to the Fourier basis.
The transformation given above can be written as a matrix-vector multiplica-
tion. Implemented naively, the DFT has a complexity ofO(N2). The complexity
can be reduced by employing a fast Fourier transform (FFT) algorithm. The
idea of FFT algorithms is to compute the DFT of the input by computing many
small DFTs. The FFT can reduce the complexity to O(N logN).

For our application, we need the Fourier coefficients of a 2D image. The
DFT of a 2D signal of size N ×M is defined as

Xkl =

N−1∑
n=0

M−1∑
m=0

xnme
−2πi(kn/N+lm/M) . (2.8)

These coefficients can be computed by first applying the DFT along one dimen-
sion and then transforming this result again along the second dimension.

The Fourier transform is also often used to efficiently evaluate convolu-
tions of two sequences. The circular convolution of two finite sequences x =
(x0, . . . , xN−1) and y = (y0, . . . , yN−1) is defined as

(x ∗ y)n =

N−1∑
l=0

xl · yn−l mod N . (2.9)

The convolution theorem for the discrete Fourier transform states that

DFT[x ∗ y] = DFT[x] ◦DFT[y] , (2.10)

where ◦ denotes the pointwise multiplication of two sequences. The frequency
domain coefficients of the convolution of two sequences in the spatial domain
are exactly the pointwise product of the frequency domain coefficients of the
individual sequences. The convolution can therefore be evaluated by first trans-
forming both sequences to the frequency domain, multiplying their coefficients
and then applying the inverse DFT to get back to the spatial domain. If the
wrap around effect of the circular convolution is undesirable, the input signal has
to be zero-padded before transforming it. The result then needs to be cropped
back to the original size.

2.2. MONTE CARLO RENDERING 7

−ωi
x′

ωi

ωo
H2(n)

x

Figure 2.1: Visualization of some of the terms used in Equation (2.11). The
radiance emitted in direction ωo depends on the radiance coming from the envi-
ronment. In this case, the point x is lit indirectly by other objects, most notably
by the green box on the right reflecting the incoming light sunlight.

2.2 Monte Carlo rendering

In computer graphics, rendering realistic computer generated images is one of
the main research areas. To create a realistic image computationally, one has
to simulate how light is transported through a scene. This section gives a very
brief introduction to Monte Carlo rendering. Light transport depends on the
geometry of the objects in a scene and their material attributes. The connection
of these properties to light transport is given by the rendering equation [Kaj86]:

L(x, ωo) = Le(x, ωo) +

∫
H2(n)

f(x, ωo, ωi)L(x′i,−ωi) cos θidωi , (2.11)

where L(x, ωo) denotes the radiance, i.e. the amount of light energy, trans-
ported along a ray leaving point x in direction ωo. This radiance is composed
of the radiance Le(x, ωo) emitted by the object itself and radiance reflected
from the environment. The reflected radiance is computed by integrating the
incoming radiance over the hemisphere H2(n), where n is the surface normal.
The incoming radiance L(x′i,−ωi) is weighted by the bidirectional reflectance
distribution function (BRDF) value f(x, ωo, ωi), which describes how light is
reflected by a certain material. It is also multiplied by the cosine of the angle
θi between the surface normal and ωi. The cosine factor accounts for the fact,
that the incoming light strength depends on the angle of the ray hitting the sur-
face. A visualization of the terms in Equation (2.11) is given in Figure 2.1. The
rendering equation in this form does not account for effects such as refractions
or subsurface scattering. To generalize, one would need to integrate over the
whole sphere of directions instead of the hemisphere and use the bidirectional
scattering distribution function (BSDF) instead of the BRDF. The BSDF also
describes the refraction and scattering properties of a material.

The recursive nature of the rendering equation and the irregular structure of
geometries and materials in a typical scene make it impossible to find a closed
form solution. A numerical solution to the integral equation can be computed
using Monte Carlo methods. From the rendering equation, it is possible to derive
a path integral formulation of the value in each pixel of an image recorded by a

2.2. MONTE CARLO RENDERING 8

camera in the scene. [Vea98] The value of pixel j is given as

Ij =

∫
Ω

fj(x̄)dµ(x̄) (2.12)

where Ω is the space of all possible light paths in the scene. A path is defined as
the connection of an ordered list of vertices on surfaces in the scene. fj(x̄) is the
measurement contribution function and dµ(x̄) is the area-product measure. The
measurement contribution function measures the amount of light carried along
path x̄ to pixel j. It is a product of the light emitted by the object at the end
of the path, factors accounting for the geometry of the path, the BRDF values
at each path vertex and the sensor responsivity. The area product measure is
the product of the canonical area measures of the objects at each path vertex.1

The path integral can be estimated using Monte Carlo integration. An
unbiased estimate for the pixel value Ij is given as

Îj =
1

N

N∑
i=1

fj(x̄i)

p(x̄i)
(2.13)

where N is the number of samples taken, p(x̄i) is the probability density function
of a probability distribution over path space and x̄1, . . . , x̄N ∈ Ω are paths sam-
pled using this distribution. The unbiasedness of this estimate follows directly
from the definition and the definition of the expected value.

The choice of the probability distribution has a big impact on the conver-
gence of the algorithm. First of all, the paths are never sampled uniformly from
all paths, since the majority of possible paths carries no light and does not con-
tribute to the final image. Instead, paths are generated by starting from the
camera and then tracing a path through the scene, which is then at one point
randomly connected to a light source. The resulting algorithm is called path
tracing [Kaj86].

Since computation power is limited, one can usually only evaluate a fairly
limited number of samples per pixel. The number of samples required for a com-
pletely converged image is often very high, since the integrand is high dimen-
sional. The estimate computed using path tracing suffers from a high variance,
i.e. noise. There are many different approaches to reduce noise in path tracing.
The probability density used to sample paths can be created using a variety
of strategies, which can drastically improve the convergence in many common
scenarios. [Vea98] Another approach is to filter the rendered image. This does
introduce bias, but can be very effective in reducing MSE.

1For a manifold M, the canonical area measure dA is defined such that
∫
M 1 dA(x) equals

the surface area of M. A 3D scene can now be interpreted as a union of manifolds. The area
product measure for a path is simply the product of the area measures at each path vertex.

2.3. HALIDE 9

2.3 Halide

The Halide language [RKAP+12] is a domain specific programming language
which primarily focuses on high performance image processing. Halide follows
a functional paradigm and separates the functionality from the schedule of an
algorithm. This allows the programmer to optimize the performance of his im-
plementation by trying out different schedules without affecting the correctness
of the computations. The aim of Halide is not automatic performance opti-
mization, but giving the programmer the means to optimize code more quickly
than by using conventional tools. Traditionally, optimization often reduced the
readability and maintainability of the code. To use for example vectorization in
C++ , one has to use platform specific instructions, which make the code fairly
difficult to read for most programmers. Using Halide, optimization does not
diminish the quality of the code.

Halide is not Turing complete, since it is not possible to write infinite loops
in Halide.2 Conceptually, a Halide program consists of a number of for-loops
with known iteration counts. Branching using if-statements is also supported.
Halide then allows the programmer to reorder the computations and to specify
where temporary results are stored. The loops can be parallelized on the CPU
or GPU and vectorization is also supported. All this can be controlled manually
by the programmer with very little programming effort. All index calculations
and memory management operations are done automatically.

Halide also supports automatic sliding window optimizations and storage
folding. Sliding window optimization allows results from previous calculations
to be reused. Storage folding is used to minimize the amount of storage used
for temporary buffers. The programmer does not have much control over these
two optimizations, which is contrasting the philosophy of Halide of allowing the
programmer to control the schedule.

Since it abstracts the algorithm from the underlying implementation, Halide
is very portable. Halide code can be compiled for a variety of architectures and
builds on the LLVM [LA04] compiler framework. The Halide language provides
a C++ front end in which Halide programs can be specified. There also exists a
Python binding, but the C++ front end is better maintained and more commonly
used.

The most important primitive in Halide programs are Halide functions. They
are used to specify the algorithm and are also used for scheduling. A Halide
function is always a total function mapping a tuple of integers to a scalar or
tuple of arbitrary numerical type. A simple three-by-three box blur can for
example be specified as part of a regular C++ program as

2It is however possible to call external C functions from within Halide code, which can
then do arbitrary computations. This functionality is thought for special use cases, such as
using external C libraries, which will not be covered here.

2.3. HALIDE 10

1 Image<f loat> in = loadImage (. . .)
2 Var x , y , xo , yo , xi , y i ;
3 Func img , bX, bY;

4 img (x , y) = in (clamp (x , 0 , in . width ()−1 ,
5 clamp (y , 0 , in . he ight () −1)) ;
6 bX(x , y) = (img (x−1, y) + img (x , y) + img (x+1, y)) / 3 ;
7 bY(x , y) = (bX(x , y−1) + bX(x , y) + bX(x , y +1))/3;

8 bY. t i l e (x , y , xo , yo , xi , yi , 256 , 3 2) . p a r a l l e l (yo)
9 . v e c t o r i z e (xi , 8) ;

10 bX. compute at (bY, y i) . s t o r e a t (bY, xo) . v e c t o r i z e (x , 8) ;

The description of the blur algorithm (blue) is independent from its schedule
(green).3 This example code here is scheduled to run on the CPU. We mostly
used Halide to run code on the GPU, but CPU scheduling is better suited to
explanatory purposes, as it is slightly less technical.

The input image is assumed to be a black and white image loaded into
the buffer in. The input is first wrapped into the function img. The wrapper
function clamps all access to the input buffer in order to prevent out of bounds
access. The filter then first blurs the image horizontally. The result is then used
as input to the vertical blur pass.

The interesting part about this code is its schedule. The computation of
the vertical blur pass is split into tiles of 256 × 32 pixels, where the variables
xo and yo index the tiles and xi and yi index pixels within tiles. The code is
parallelized over yo, which means rows of tiles are processed in parallel. Within
each tile, the vertical blur is vectorized along the horizontal direction, where 8
elements are collected into one vector. The result of the horizontal blur pass
is computed as needed for each row of the vertical blur pass. This improves
memory access performance, since the horizontal blur result is most likely still
in cache while being used by the second blur pass. The result of the horizontal
blur is stored at the level of the loop over xo. Each thread just stores the result
of the horizontal blur for the currently processed tile. In fact, there is no need
to store the whole result of bX for the current tile, since only three rows of it
are required simultaneously. Halide thus automatically folds the buffer to store
the horizontal blur into a buffer containing only the three lines of bX currently
used. This buffer has then the size 256×4, because the tiles are 256 pixels wide
and we need to store 3 rows in each tile (Halide rounds the 3 up to the next
power of two). Leaving out vectorization for brevity, the described schedule is
in pseudocode:

3The schedule is an updated version of the schedule proposed in the original paper by
Ragan-Kelley et al. [RKAP+12]. The updated version has been proposed by Andrew Adams,
5.1.2015, https://lists.csail.mit.edu/pipermail/halide-dev/2015-January/
001341.html, last retrieved 28.7.2015.

2.3. HALIDE 11

1 parallel for all rows of tiles yo
2 for all tiles xo in row yo
3 allocate buffer for bX of size 256× 4
4 compute first three rows of bX
5 compute first row of bY from these
6 for yi = 1 to 31
7 compute row yi+ 1 of bX
8 compute row yi of bY
9 free buffer for bX

The Halide code does not yet compute anything. The following code evalu-
ates the function bY at each pixel of the output buffer out :

1 Image<f loat> out (in . width () , in . he ight ()) ;
2 bY. r e a l i z e (out) ;

The Halide function bY would in this case be just-in-time (JIT) compiled
when the code is executed as part of the surrounding C++ program. Halide also
allows the code to be compiled ahead of time and then be called as a normal C
function, instead of using ”realize”. Compiling ahead of time is usually desirable
for execution speed, but JIT compilation can be useful to quickly see results,
without having to set up the whole ahead of time compilation process.

Since it can be difficult to completely understand what is going on in terms
of scheduling, Halide provides a variety of debug options. It is possible to get a
pseudocode representation of the compiled pipeline, which precisely shows when
each function is evaluated and where the results are stored. The pseudocode
also shows where memory is allocated and the size of each buffer. This proved
to be very useful to find optimization potential and also to identify bugs in
Halide. It is even possible using Halide to create animations, which visualize
how schedules access memory.

Chapter 3

Robust Denoising using
Feature and Color
Information

3.1 Overview

Evaluating the integral in Equation (2.12) using Monte Carlo integration results
in a fairly noisy image. Even high numbers of samples per pixel often cannot
eliminate the noise completely. The Robust Denoising using Feature and Color
Imformation (RDFC) algorithm by Rousselle et al. [RMZ13] tries to remove this
noise after the rendering process has finished. This allows to get high quality
results in much less time than without filtering. The filtering step reduces the
variance at the cost of introducing bias to the estimate of the integral, but
usually leads to a significant reduction in relative mean squared error. There
exist a variety of techniques which try similar things, but none does significantly
improve over RDFC.

Many recent algorithms for denoising Monte Carlo renderings are based on
two key ideas: using feature information to guide the filtering process and em-
ploying a statistical error estimate for optimal filter parameter selection.[ZJL+15]

In the context of rendering, the term ”feature” refers to information about
the rendered scene, that can be collected during the rendering process without
much overhead. This additional information is usually stored for each pixel
of the output image. Typical features are the normals of the objects in the
scene, texture information and the position of the objects. Because these factors
need to be computed for the path tracing algorithm, it does not incur much
overhead to store them to separate buffers. Denoising algorithms that rely
on features, assume that the features are highly correlated to the true color
image and therefore guide the filtering of the noisy color image by the feature
information. The features typically have a lot less variance than the sampled
color information. There are far fewer random choices involved when sampling
the features. Most features only depend on the primary hit of a ray in the scene.
Despite the relatively simple sampling process, the features are not completely
noise-free. Some noise can still occur at the edges of objects or in the presence

3.1. OVERVIEW 13

Color image Features Candidate filters Selection map Filter output

1 2 3

Figure 3.1: High-level overview of the RDFC filter. The color and feature infor-
mation is used to compute three candidate filters (step 1). For each candidate
filter the MSE is estimated using SURE. A spatially varying candidate filter se-
lection map is then constructed from these estimates to minimize the estimated
MSE (step 2). The output is then computed as the sum of the candidate filters
weighted by the selection map (step 3).

of motion or out of focus blur.
Similar to many other denoising algorithms, RDFC tries to denoise the input

image by computing the denoised result at pixel p as a weighted sum of noisy
pixels from a neighborhood of pixel p. The output of the filter is then given as

Fi(p) =
1

C(p)

∑
q∈Np

w(p, q)ui(q) . (3.1)

Here, ui(p) denotes channel i of the noisy image at pixel p, Np the square neigh-
borhood of pixel p, w(p, q) filtering weights for the individual neighboring pixels
and Fi(p) channel i of the filtered output at pixel p. C(p) is a normalization
constant defined as C(p) =

∑
q∈Np w(p, q).

If n noisy pixels with the same expected value and variance would be av-
eraged, the result would still have the same expected value and n times less
variance than the individual pixels. In practice it is unknown which pixels have
the same expected value, but it’s possible to heuristically average similar pix-
els together and get a significant improvement in mean squared error over the
noisy input. The challenge is to find suitable filter weights. There is a trade-off
between increasing bias and reducing variance. If the weights are not restrictive
enough, unrelated pixels are mixed together, which results in a blurred, strongly
biased result. If the weights are too restrictive, the noise does not get removed
and the filter output still has a high variance.

The weights used in RDFC are based on the non-local means filter (NL-
means) [BCM05, RKZ12] for the sampled color information and a cross-bilateral
filter [TM98, LWC12] for the feature information. By using the less noisy fea-
tures, the similarity between two pixels can be estimated much better than from
just the noisy color image.

Many denoising algorithms can be controlled by a few user selected param-
eters, for which the optimal setting usually cannot be analytically determined.
Therefore, using a statistical error estimate is crucial to select good parameter
settings on a per pixel basis. In RDFC, the sensitivity of the filter to color and
to feature information can be selected independently, which offers a great deal
of control over the filter. There can be image regions, where using the feature
information is very effective and the color values can be nearly ignored. But
there can also be image content, that is not present in the features and would
therefore be blurred too much, if the filter is not sensitive enough to changes

3.2. NON-LOCAL MEANS COLOR WEIGHTS 14

in color. The parameters thus need to be selected spatially varying in order to
achieve high quality results. The RDFC algorithm filters the input three times
using different filter parameters and then combines these results by estimating
the mean squared error of each using Stein’s unbiased risk estimate (SURE)
[Ste81]. SURE allows to estimate the mean squared error of an estimator in an
unbiased way. This risk estimate has been applied to different denoising prob-
lems, including to denoising of Monte Carlo renderings by Li et al. [LWC12].

The first section of this chapter describes the computation of filtering weights
from the noisy color image, the second section gives the details of the weight
computation from the features, and the third section covers the application of
SURE to RDFC. After this the RDFC algorithm is explained and its implemen-
tation using Halide described.

3.2 Non-local means color weights

3.2.1 The non-local means filter

The RDFC filter computes NL-means filtering weights from the noisy color
image. The NL-means weights can be understood and motivated by first looking
at the the weighting function used in the original bilateral filter by Tomasi and
Manduchi [TM98]. The bilateral filter is an edge-aware smoothing filter which
computes the output as a weighted sum using the weighting function

w(p, q) = exp

(−d2(p, q)

2σ2
r

)
exp

(
−(‖p− q‖22)

2σ2
s

)
, (3.2)

where

d2(p, q) =

3∑
i=1

(ui(p)− ui(q))2 (3.3)

and p and q are the 2D coordinates of the center and neighboring pixel and
‖p− q‖22 is the squared euclidean distance. The first exponential term weights
down pixels with a large difference in value and the second exponential term
pixels that are spatially far away from the center pixel. The parameter σs is the
spatial filtering range and controls how large the neighborhood considered by
the filter is. The intensity filtering range σr determines how strict the filtering
is. A large value of σr will make the filtering less sensitive to pixel differences
and similar to standard Gaussian filtering. If σr is small, the filtering weights
are very restrictive and only very similar pixels will be averaged together.

The bilateral filter is limited by the quality of the distance estimate between
two pixels. Because the input image is noisy, the measured distance is also
corrupted by noise and not very reliable. The non-local means filter tries to
overcome this issue by computing a more robust distance estimate. Instead
of directly comparing the value of two noisy pixels, the NL-means filter com-
pares small patches around these two pixels. The distance between two patches
centered at pixels p and q is calculated as

d2(P (p), P (q)) =
1

3(2f + 1)2

3∑
i=1

∑
n∈P (0)

∆2
i (p+ n, q + n) , (3.4)

3.2. NON-LOCAL MEANS COLOR WEIGHTS 15

where f is the radius of the compared patches and P (0) denotes all pixel offsets
within a patch. The function ∆2

i computes the distance in channel i between
pixel p and q. In the original NL-means formulation ∆i(p, q) is defined as

∆i(p, q) = (ui(p)− ui(q))2 − 2σ2 , (3.5)

where σ2 is the noise variance. The standard NL-means filter assumes the
variance of the noise to be uniform.

The subtraction of 2σ2 makes the distance estimate an unbiased estimate of
the true squared distance between two pixels. The squared distance between two
values corrupted by additive noise overestimates the true distance exactly by a
factor of 2σ2. This follows from the basic properties of the expected value: Let
y1 = x1 + n1 and y2 = x2 + n2 be two pixel values corrupted by additive noise.
The random variables n1 and n2 are assumed to be independent and identically
distributed (i.i.d) with expected value 0 and variance σ2 and x1 and x2 are the
true pixel values. The expected value of the squared difference between the
noisy measurements is then:

E
[
(y1 − y2)2

]
= E

[
(x1 − x2)2 + 2(x1 − x2)(n1 − n2) + (n1− n2)2

]
= (x1 − x2)2 + 2(x1 − x2)(E[n1]− E[n2]) + E

[
(n1 − n2)2

]
= (x1 − x2)2 + E[n2

1]− 2 E[n1] E[n2] + E[n2
2]

= (x1 − x2)2 + 2σ2 .

Thus we get E[(y1 − y2) − 2σ2] = (x1 − x2)2. Note that this also holds if we
replace the true variance σ2 by an unbiased variance estimate.

Comparing small patches significantly improves denoising quality compared
to the standard bilateral filter. As small patches of pixels are compared, the
filter does not need to be spatially constrained like the bilateral filter and is
thus ”non-local”. There is no spatial weighting function. To reduce complexity,
in practice still only pixels from a neighborhood of radius r around the central
pixel are compared.

In Figure 3.2 on the next page the NL-means distance estimates are visu-
alized for different patch radii f . For a radius of 0 the distances correspond
to the distances used by the bilateral filter. The bilateral distances are very
noisy. Increasing the patch radius f reduces the noise in, at the cost of slightly
blurring the distance estimates.

From the distance estimate the weights are then calculated as

w(p, q) = exp

(
−max(d2(P (p), P (q)), 0)

2σ2k2

)
. (3.6)

Here k is a user selected scaling factor to control the sensitivity of the filter. The
division by σ2 makes sure, that the filter strength depends on the variance of
the signal and the filter is consistent. The distance estimate is clamped to avoid
negative distances, which could occur as the result of the variance subtraction.

3.2.2 Non-uniform variance

The previously described weights are not directly suitable for RDFC, because
they assume the noise variance to be uniform. The variance in Monte Carlo

3.2. NON-LOCAL MEANS COLOR WEIGHTS 16

(a) Noisy image (b) f = 0 (c) f = 1 (d) f = 2 (e) True dis-
tances

Figure 3.2: Comparison of the NL-means distance estimates for different patch
radii f . Visualized are the distances measured from the marked central pixel
(scaled for optimal display). The distances in (b) – (d) can be compared to
the true distances in (e), which are computed using the noise-free ground truth
image.

rendered images is highly dependent on the structure of the scene and thus
spatially non-uniform. The NL-means filter weights have to be modified to
account for this. This can be done by defining the distance between two pixels
as

∆2
i (p, q) =

(ui(p)− ui(q))2 − (Vari[p] + min(Vari[p],Vari[q]))

ε+ k2
c (Vari[p] + Vari[q])

, (3.7)

where kc controls the sensitivity of the filter to color differences and ε is a small
constant to avoid division by zero.[RKZ12] The variance term 2σ2 is replaced
by the sum of the noise variance at pixel p and pixel q. The estimation of the
per-pixel noise variance is non trivial and will be explained in Section 3.2.5. In
the numerator the minimum of both variances is taken instead of the variance
of the neighbor pixel. This prevents blurring if the variance of the neighboring
pixel is higher than the variance at the center pixel. This introduces bias to the
distance estimate, but improves overall filtering quality. The color weights for
RDFC are then given as

wc(p, q) = exp(−max(d2
c(P (p), P (q)), 0)) , (3.8)

where d2
c(P (p), P (q)) is the distance estimate between two patches calculated

using the above non-uniform distance formulation. To avoid confusion with
the feature weights and distance estimates, the color weights and distances are
written with the subscript c.

Note, that the above distance estimate assumes that the noise at pixels p
and q is independent. This only holds, if the image uses a box filter as pixel
filter. In rendering, the pixel filter describes how samples are averaged into
image pixels. Using a box filter, each sample only contributes to one pixel in
the image plane, and all samples within one pixel have the same weight. The
noise of pixel p is thus independent from the noise of any other pixel q. This
does not hold, if a pixel filter with a larger support is used, where each sample
contributes to multiple pixels.

3.2.3 Patch-wise weight computation

The RDFC filter uses the patch-wise formulation of the NL-means filter. Instead
of copying the pixel q to position p with weight wc(p, q), the whole patch P (q)

3.2. NON-LOCAL MEANS COLOR WEIGHTS 17

p

q

p̃

q̃

2f + 1

Patch-wise weight for pixel q

wc(p̃, q̃)

Figure 3.3: Patch-wise extension of the NL-means filter. First, the weights
between the pixels with the same offset are calculated as the standard NL-
means weights. The different weights for the pixels are visualized as grayscale
values inside these pixels. The pixel q is then weighted by the average of these
weights.

of (2f+1)× (2f+1) pixels is copied to the patch P (p) with the weight wc(p, q).
The pixel q is thus copied (2f + 1) × (2f + 1) times to position p, each time
multiplied with a different weight. The patch-wise extension is equivalent to
weighting pixel q by the average of all weights wc(p̃, q̃), where q̃ has the same
offset to p̃ as q to p, i.e. q̃ − p̃ = q − p and q̃ is in the patch of radius f around
q. In Figure 3.3, the patch-wise weight calculation is visualized. In practice,
all weights for the same offset between p and q are calculated at the same time
and then filtered using a box filter of radius f to compute the averaged weights.
Pixel q is then copied to pixel p just once using the averaged weight. Blurring
the weights using a box filter is relatively cheap and gives a slightly smoother
filter output. [RKZ12] From now on wc(p, q) will denote the patch-wise weights.

3.2.4 Symmetric weights

Another modification to the weight computation is the introduction of a sym-
metric distance computation. The observation has been made, that smooth
gradients are filtered poorly by NL-means, because the filter is constrained to
filter orthogonally to the direction of the gradient in the image. [RKZ12] In a
symmetric structure denoising can be improved by averaging radially symmetric
pixels. If the neighbor pixel q1 is brighter than the central pixel p and neighbor
q2 darker by the same factor, the average of both neighbors will have the same
value as the central pixel. The effect of the symmetric weight formulation is
demonstrated in Figure 3.4 on the next page.

To use symmetries in the image, a symmetric distance estimate is computed
for two radially symmetric pixels q1 and q2. The symmetric distance estimate
for these two pixels is used if there is a high enough chance that the data is
actually symmetric. The symmetric distance estimate is

∆2
i (p, q̄) =

(ui(p)− ui(q̄))2 − (Vari[p] + Vari[p, q̄])

ε+ k2
c (Vari[p] + Vari[q̄])

, (3.9)

3.2. NON-LOCAL MEANS COLOR WEIGHTS 18

(a) Using only asym-
metric weights

(b) Using symmetric
weights

(c) Reference image

Figure 3.4: Effect of symmetric weights when filtering a smooth gradient. Filter-
ing using only the asymmetric weights gives clear banding artifacts in the smooth
gradient. The symmetric weight formulation allows to recover the smooth gra-
dient structure much better.

where

ui(q̄) =
1

2
(ui(q1) + ui(q2))

Vari[q̄] =
1

4
(Vari[q1] + Vari[q2])

Vari[p, q̄] =
1

4
(min(Vari[p],Vari[q1]) + min(Vari[p],Vari[q2])) .

This distance estimate compares the central pixel with the average of the
two symmetric neighbors. If the estimated distance is sufficiently small, it can
be assumed that the data is symmetric. In RDFC the final weight is a linear
combination of the symmetric and asymmetric weights for each pixel. The
weighting factor a is computed as

ã =

{
wc(p,q̄)

wc(p,q1)+wc(p,q2) − 1 d2(P (p), P (q1)) < d2
max and d2(P (p), P (q2)) < d2

max

0 otherwise

a = max(0,min(1, ã)) ,

where d2
max = 25 is a constant and wc(p, q̄) is the symmetric weight computed

from the symmetric distance ∆2
i (p, q̄). Essentially, the symmetric weight term

only affects the final weight if it is larger than the sum of the asymmetric weights
and both asymmetric distances are below some threshold.

The asymmetric weights are then combined with the symmetric weights to
give the final weights for pixels q1 and q2 as

w̃c(p, q1) = a · wc(p, q̄) + (1− a) · wc(p, q1)

w̃c(p, q2) = a · wc(p, q̄) + (1− a) · wc(p, q2)

In order to simplify notation, we will denote the new weights again by
wc(p, q) in the following. There is no need to refer to the original asymmet-
ric weights again.

3.2.5 Variance estimation and two-buffer filtering

To achieve good denoising performance with the previously described filter,
having a good variance estimate for the noise at each pixel is key. The noise

3.2. NON-LOCAL MEANS COLOR WEIGHTS 19

(a) Two-buffer vari-
ance

(b) Sample variance (c) Scaled sample
variance

Figure 3.5: Comparison of the two-buffer variance to the biased sample variance
and the scaled sample variance. The scaled sample variance has the same mag-
nitude as the two-buffer variance estimate, but the noise characteristics of the
sample variance (all images are scaled by the same factor for optimal display).

variance of the output pixel can be estimates by computing the sample variance
of all Monte Carlo samples contributing to one pixel and dividing it by the
number of samples, to get a variance estimate for the sample mean. In case
of naive random sampling, where the samples at each pixel are i.i.d, this gives
an unbiased estimate of the variance at each pixel. However, the samples used
in Monte Carlo path tracing are often pseudo-random samples drawn from a
low-discrepancy sequence. These sequences are carefully constructed to achieve
faster convergence of the Monte Carlo integration process. [Vea98] When using
low-discrepancy sampling, the sample variance is biased, since the individual
samples are in fact correlated. The sample variance then overestimates the
variance of the noise. [RKZ12]

A possible solution to this problem is to accumulate samples into two dif-
ferent buffers instead of just one. This means half the samples are written to
one buffer and the other half to other one. The samples accumulated in each
buffer are generated from a different low discrepancy sequence and are thus
independent. The two buffers then give two estimates for a single pixel, from
which a variance estimate of the sample mean at pixel p can be computed as
Vari[p] = 1

4 (vi(p) − wi(p))2, where v and w are the two different buffers. This
variance estimate will be called two-buffer variance from now on.

Even though unbiased, the two-buffer variance is very noisy, since it is com-
puted from just two observations. On the other hand, the biased sample variance
is less noisy. In RDFC these two different variance estimates are combined by
scaling the biased sample variance to have a similar magnitude as the two-buffer
variance. This is done by first smoothing both variance estimates with a large
21 × 21 pixel box filter and then computing the per pixel ratio of the blurred
estimates. The ratio is then used to scale the sample variance. In Figure 3.5
both variance estimates and the result of the variance scaling are displayed.

The two-buffer approach also allows for a simple estimation of the output
variance of the NL-means filter. The filtering weights can be computed using
the mean of the two buffers, but be applied to each buffer separately. The
mean of the two filtered buffers is then exactly the same as if the filter would
have been run on the mean directly. The NL-means filter is linear for given
filtering weights, as it computes a weighted sum at each pixel. The two filtered

3.3. CROSS-BILATERAL FEATURE WEIGHTS 20

(a) Noisy feature (b) Prefiltered feature

Figure 3.6: Prefiltering of the features demonstrated on the example of the
normals. The object in the foreground (blue) is strongly blurred since it is out of
focus, while the background (green/yellow) is in focus and practically noise-free.
The noise is caused mainly by the out of focus blur and is removed effectively
by the NL-means filter. The hard edge in the background is preserved.

buffers can be used to estimate the residual variance after filtering. Note, that
this is not an unbiased estimate, since the filtering weights are correlated with
both buffers. To get an unbiased estimate, one would need to compute the
filtering weights for each buffer separately. This would then give an unbiased
variance estimate, at the cost of changing the filter result. In practice, it is
more important to have high quality filtering weights from the mean of the two
buffers than an unbiased estimate of the output variance.

3.3 Cross-bilateral feature weights

3.3.1 Feature prefiltering

The sampled features are not completely noise-free. Effects like out of focus
blur or motion blur can cause the features to be noisy. Even without these
effects there is often some noise at sharp edges. There are also features which
are inherently more noisy than others. An example for this is the visibility
feature used in RDFC, which stores whether a light source is directly visible or
not. The visibility captures direct lighting shadows quite effectively, but is more
noisy than other features. The noise in the features is usually still fairly limited
compared to the noise of the color image. Therefore, denoising the features is
much easier than denoising the color image. In RDFC the features are prefiltered
using the same NL-means filter formulation which is used to calculate the color
weights. This is very effective, as shown in Figure 3.6.

3.3.2 Feature weights

After the prefiltering, the features are used to calculate feature weights, which
complement the existing color weights. The feature weights are computed using
a cross-bilateral filter. Similar to the NL-means algorithm, the cross-bilateral
filter tries to improve on the standard bilateral filter by computing a better
distance estimate. Instead of extending the distance measure itself to be more
robust, the cross-bilateral filter computes the weights based on one or more guide

3.3. CROSS-BILATERAL FEATURE WEIGHTS 21

images. The guide images should have less noise than the noisy color image and
have a similar structure. In RDFC the guide images for the cross-bilateral filter
are the prefiltered features.

Similar to the color distance, the feature distance between two pixels in
channel i of feature fj is measured as

Φ2
j,i(p, q) =

(fj,i(p)− fj,i(q))2 − (Varj,i[p] + min(Varj,i[p],Varj,i[q]))

ε+ k2
f (Vj,i[p] + Vj,i[q]))

, (3.10)

where kf controls the sensitivity of the filter to feature information and ε is a
small constant which helps to avoid division by zero. Varj,i[p] is the variance of

feature j in channel i. Vj,i[p] is defined as Vj,i[p] = max(τj ,Varj,i[p], ‖∇j,i[p]‖2)

and Vj,i[q] is defined equivalently. The gradient magnitude term ‖∇j,i[p]‖2,
which essentially measures local feature contrast, helps to avoid constraining
the filter too much if the central pixel p is directly on an edge of feature j. The
gradient magnitude is computed from a finite difference estimate of the image
space gradient. The value τj is a per feature threshold. It prevents the feature
weights from becoming too restrictive if the feature variance and gradient are
both close to zero. For most features τj is set to a global threshold τ . For
features, that have values of a different order of magnitude than [0, 1], e.g. the
vertex position, the threshold is set as τj = τ ·(max fj(p))

2, where the maximum
is taken over all pixels. This prevents these features from being more important
than those with smaller values. The per-channel distances are then summed up
to get the final feature distance as

Φ2
j (p, q) =

1

cj

cj∑
i=1

Φ2
j,i(p, q) , (3.11)

where cj is the number of channels of feature j. From the distance estimate
Φ2
j (p, q) the weights for feature j are computed as

wfj (p, q) = exp(−max(Φ2
j (p, q), 0)) (3.12)

Given the feature weights wfj (p, q), the final feature weights are then defined as

wf (p, q) = min
j∈{1,...,M}

wfj (p, q) , (3.13)

where M is the number of features. This always selects the most constraining
filter weights. If there is a strong edge in any feature, the filter should not blur
across this edge. The same approach is taken in combining the color weights
wc(p, q) and the feature weights wf (p, q). The final weights of the filter are then

w(p, q) = min(wc(p, q), wf (p, q)) (3.14)

This also shows again why the threshold τj is needed. Without the threshold,
one single noise-free feature could constrain the filter too much, even if the color
image is very noisy.

The symmetric weights formulation is also used for the feature weights
wfj (p, q). The numerator takes on the same form as for the color weights
in Equation (3.7). In the denominator, the formulation is the same as with

3.4. STEIN’S UNBIASED RISK ESTIMATE 22

the color weights, except that, like in the asymmetric feature weights, all the
variance terms are replaced by the maximum over the variance, the gradient
magnitude and the threshold τj .

Note, that the formulation of the feature distances given in Equation (3.10)
on the previous page slightly differs from the original definition given in the
RDFC paper [RMZ13]. The formulation used here is the one which is imple-
mented in the CUDA code published by the authors. The Halide version of
RDFC therefore also uses these feature distances.

3.4 Stein’s unbiased risk estimate

3.4.1 Definition

Stein’s unbiased risk estimate (SURE) [Ste81] is an unbiased estimate for the
mean squared error of a statistical estimator. The SURE is used to estimate
the per-pixel MSE of each candidate filter used in RDFC. The per-pixel MSE
of a filter is estimated as

SURE(p) =

3∑
i=1

SUREi(p) =

3∑
i=1

‖Fui(p)− ui‖2 − σ2
i + 2σ2

i

∂Fui(p)

∂ui
. (3.15)

Here, ui denotes the noisy pixel value ui(p), σ
2
i is the variance in channel i at

pixel p and Fui(p) is the filter output in channel i at pixel p, depending on the
value ui of the unfiltered pixel.

Because the Monte Carlo estimate ui is the mean of a number of n i.i.d
samples, it follows by the central limit theorem, that it converges in probability
towards a normal distribution N(xi, σ

2
i), where xi is the true pixel value and

σ2
i is the true variance of the Monte Carlo estimate with n samples. It turns

out, that assuming the noise in the Monte Carlo estimate to follow a normal
distribution is a good approximation of the true noise distribution even for a
small number of samples. [LWC12]

Under the assumption, that the noisy pixel value ui is given as the true
value xi plus additive noise ni, where ni follows a Gaussian distribution with
mean zero and variance σ2

i , the unbiasedness of the estimator can be proved
using elementary probability theory. A simple proof is given by Blu and Luisier
[BL07].

3.4.2 Application to RDFC

The SURE can be computed without much overhead alongside the existing
filtering routine in RDFC. Instead of the true noise variance, the scaled sample
variance is used. The squared difference to the unfiltered value is also trivial to
compute. The differential expression is, in contrast to Li et al. [LWC12], not
analytically calculated, but approximated using a finite difference formulation:

∂Fui(p)

∂ui
≈ Fui+δ(p)− Fui(p)

δ
, (3.16)

where δ is a small value set proportionally to the value of the unfiltered image
as δ = 0.01× ui.

3.5. THE RDFC ALGORITHM 23

The differential is then computed by simultaneously computing the filtered
result Fui(p) in each pixel and the result of the filter if the central pixel is
replaced by 1.01× ui.

3.5 The RDFC algorithm

The inputs of the RDFC algorithm are the noisy color image c, the color sample
variance c svar, the array of features feat[], the array of feature sample vari-
ances feat svar[] and the user specified filter radius R. The complete RDFC
filter is given by pseudocode on the following page.

All color and feature data is assumed to be stored in two separate buffers,
which can then be used to estimate the variance. The algorithm uses the fol-
lowing functions

• ScaleSampleVar: Implements the previously described sample variance
scaling technique. The inputs are the sample variance and the buffers used
to compute the two-buffer variance. The output is the sample variance
scaled by the two-buffer variance.

• TwoBufferVar: Computes a variance estimate from two buffers. Since
the estimate is very noisy, it is blurred using a small Gaussian filter with
a standard deviation of 0.5.

• FeatureFilter: Implements the color and feature filter routine, which
filters the input data using the previously described color and feature
weights. The inputs are a noisy image, a guide color image, the variance
of the guide color image, the array of features and the array of feature
variances, as well as a parameter data structure. Note that for kf = ∞
the filter degrades to the NL-means filter and does not use any feature
information. The noisy image is assumed to be stored in two buffers.
The output does then consist of the two individually filtered buffers and
optionally the gradient term used to compute the SURE.

• Sure: Computes the SURE from the noisy color image, its variance, the
filter result and the filter gradient term.

In lines 2–4, the sample variance scaling takes place. After this step, the
input sample variances are not used anymore. The features are then prefiltered
in lines 6–9 using the NL-means filter. The residual variance of the features is
estimated using the TwoBufferVar function.

After these preprocessing steps, the color and feature filter is evaluated three
times using different parameters. The first candidate filter is most sensitive to
differences in the color image. The second candidate filter is less sensitive, since
it uses a larger patch radius. The third filter then only uses feature information
and does ignore the noisy color image entirely.

For each candidate filter, the SURE is computed and filtered using the NL-
means filter in lines 18–21. Even though unbiased, the SURE suffers from
variance inherited from the different terms used in its computation. Filtering
the error estimate can thus increase it’s quality in terms of MSE to the true
error of each candidate filter. In the implementation the three single channel

3.5. THE RDFC ALGORITHM 24

Rdfc(c, c svar, feat[], feat svar[], R)

1 // Sample variance scaling
2 var c = ScaleSampleVar(c svar, c)
3 for j = 1 to M
4 var f [j] = ScaleSampleVar(feat svar[j], f [j])
5 // Feature prefiltering
6 p = {kc = 1, kf =∞, f = 3, r = 5}
7 for j = 1 to M
8 flt f [j] = FeatureFilter(f [j], f [j], var f [j], nil, nil, p)
9 var flt f = TwoBufferVar(flt f [j])

10 // Candidate filters
11 p = {kc = 0.45, kf = 0.6, f = 1, r = R, τ = 10−3}
12 [r , dr] = FeatureFilter(c, c, var c[j], f lt f [], var flt f [], p)
13 p = {kc = 0.45, kf = 0.6, f = 3, r = R, τ = 10−3}
14 [g , dg] = FeatureFilter(c, c, var c[j], f lt f [], var flt f [], p)
15 p = {kc =∞, kf = 0.6, f = 1, r = R, τ = 10−4}
16 [b, db] = FeatureFilter(c, c, var c[j], f lt f [], var flt f [], p)
17 // Filter SURE estimates
18 p = {kc = 1.0, kf =∞, f = 3, r = 1}
19 er = FeatureFilter(Sure(c, var c, r, dr), c, var c, nil, nil, p)
20 eg = FeatureFilter(Sure(c, var c, g, dg), c, var c, nil, nil, p)
21 eb = FeatureFilter(Sure(c, var c, b, db), c, var c, nil, nil, p)
22 // Compute binary selection maps
23 selr = er < eg && er < eb && dr ≤ dg ? 1 : 0
24 selg = eg < eb && (eg ≤ er || dr > dg) ? 1 : 0
25 selb = eb ≤ eg && (eb ≤ er || dr > dg) ? 1 : 0
26 // Filter selection maps
27 p = {kc = 1.0, kf =∞, f = 3, r = 5, τ = 10−3}
28 selr = FeatureFilter(selr, c, var c[j], nil, nil, p)
29 selg = FeatureFilter(selg, c, var c[j], nil, nil, p)
30 selb = FeatureFilter(selb, c, var c[j], nil, nil, p)
31 // Candidate filter averaging
32 pass1 = r · selr + g · selg + b · selb
33 // Second filtering pass
34 p = {kc = 0.45, kf = 0.6, f = 3, r = bR/2c, τ = 10−4}
35 var pass1 = TwoBufferVar(pass1)
36 pass2 = FeatureFilter(pass1, pass1, var pass1, nil, nil, p)
37 return pass2

3.6. IMPLEMENTATION USING HALIDE AND RESULTS 25

SURE images are combined to one color image and then filtered in one step to
save some time.

The filtered SURE is then used to compute a binary selection mask for each
filter in lines 23–25. This step at each pixel selects the filter with the lowest
SURE. Since the first filter has the tendency to keep too much noise, it is only
selected if it filters more than the second one. This is measured by comparing
the differential terms dr and dg. If dr is smaller than dg in pixel p, changing
the noisy pixel p does affect the result r less than the result g and thus the
candidate filter r filters this pixel more aggressively.

The filter selection maps are then filtered using the NL-means filter in lines
27–30 to get a smooth selection map. Again, the three different selection maps
are filtered jointly. Using the smooth selection map, the result is then simply a
weighted sum of the candidate filters. It’s output variance can then be estimated
using the two-buffer technique. The result pass1 is then filtered again in a second
pass to remove residual noise.

3.6 Implementation using Halide and results

We implemented the filter as a standalone program, where the input is loaded
from OpenEXR files. The original CUDA code from Rousselle et al. [RMZ13] is
integrated in the PBRT rendering framework [PH10] and cannot be used on file
input. Aside from this difference, the implementation in Halide follows closely
the original CUDA code. The CUDA code is already fairly optimized and takes
around 4.3 s to filter a 1 megapixel image on a Nvidia GTX Titan X GPU. The
time for copying the CPU buffers to GPU memory is included in this and all
following performance measurements. The Halide RDFC code has both a GPU
and a CPU schedule. The CPU schedule was implemented mostly for debugging
reasons and did not require much additional work, as only the scheduling of the
code needed to be adjusted.

We implemented all functions used in the pseudocode as individual Halide
functions and the high level algorithm structure directly in C++. One large
monolithic Halide function to compute the whole RDFC filter would work in
theory, but would make it impossible to compile different parts of the pipeline
separately. The compilation of Halide code can get quite slow for longer func-
tions. Compiling the whole RDFC Halide code for the GPU takes around 45
seconds and compiling the Halide CPU code takes about 4.5 minutes. There-
fore it’s very useful to be able to recompile only parts of the code, especially for
experimenting with different schedules.

The main performance bottleneck of the RDFC algorithm is the Feature-
Filter routine. The key optimization which has to be made for this function,
is to avoid computing the same pixel distances over and over again. A naive im-
plementation of the NL-means weight computation would compute the distance
∆2
i (p, q) between pixels p and q many times, since there are multiple patches

where the term ∆2
i (p, q) is needed. It turns out, that this can easily be avoided

by reordering the computation of the NL-means weights. All distances between
pixels with the same offset are computed at the same time and then convolved
with a box filter of radius f to get all distances between patches of the same
offset. This is essentially the same computation as has been described for the
patch-wise weight computation, but on the pixel distances instead of the filter

3.6. IMPLEMENTATION USING HALIDE AND RESULTS 26

Image size 1024 × 1024
Radius R 10 20

CUDA code 4.3 13.3

Halide (GPU) 3.5 10.2
CPU code 396.5 1246.9

Halide (CPU) 177.7 647.8

Table 3.1: Execution times in seconds for the different implementations of RDFC
and user selected radii R. Times are averaged over five runs of the RDFC filter.
The CPU code was executed on two Intel E5645 processors with a total of 12
cores at 2.67 GHz and the GPU code on a Nvidia GTX Titan X.

weights. This optimization is used in the original CUDA code and in the Halide
implementation.

Halide allows for some optimizations in the code, which would have been
more difficult to perform in the original CUDA code. Using Halide it is for
example possible to merge subsequent computations to take place in one GPU
kernel. This allows to reduce the number of global memory accesses by using
shared memory or registers to store intermediate results. Of course these kind
of optimizations could be made in the original CUDA code too, but only at the
cost of degrading code readability and maintainability. In Halide the readability
of the code is not affected by such optimizations. The Halide implementation
of RDFC uses shared memory and loop unrolling where it gave a performance
increase. All the loops over color channels are unrolled at compile time. This
gave a performance increase of about half a second at the cost of requiring a
recompilation of the code if images with a different number of color channels
should be processed. This should however not be an issue for most use cases.

There are also limitations in Halide, which can cost some performance com-
pared to the original code. The CUDA implementation by Rousselle et al. reuses
the same few temporary buffers in each call of FeatureFilter. Halide can-
not do this by default and the temporary buffers are reallocated in each call of
FeatureFilter. A workaround for this could be to override the Halide default
memory allocator, but the performance gain would most likely not be worth the
significant amount of work required for this.

The Halide GPU implementation uses OpenCL as compilation target, which
gives slightly better performance than compiling the Halide code for CUDA. The
Halide GPU implementation is faster than the existing CUDA code by about
20%. See the detailed benchmark results in Table 3.1. Even though there is
probably still some optimization potential in the Halide code, a further speedup
of the code by a significant factor seems quite unlikely.

The Halide CPU schedule is compared to the existing RDFC CPU code. This
code is a direct port of the CUDA implementation, where all CUDA kernel
calls were replaced by parallel for-loops. The Halide CPU code outperforms
the existing RDFC CPU code by factor of 2. The Halide code makes use of
vectorization and parallelizes over tiles instead of scanlines. It also uses the
fast blur schedule presented in Section 2.3. Again, these optimizations would
be possible in the original CPU code too, but much more time-consuming to
manually implement. Even though the CPU code is far from being useful, it is

3.6. IMPLEMENTATION USING HALIDE AND RESULTS 27

still interesting to see how much can be gained using Halide over a naive CPU
implementation.

Implementing RDFC using Halide did not provide any significant problems.
The Halide code is slightly more compact than the existing CUDA and CPU
code. Since the existing code included some additional functions required for
adaptive sampling and debugging, comparing lines of code is not very meaning-
ful. Both implementations are well over 1000 lines of code. The output of the
Halide implementation matches the output of the original code almost perfectly,
but there are some small differences. The RMSE of the Halide output to the
CUDA output is however around one to two order of magnitudes smaller than
the RMSE to the converged reference image and thus negligible. A few example
outputs of the filter are shown in Figure 3.7 on the following page.

3.6. IMPLEMENTATION USING HALIDE AND RESULTS 28

(a) Reference images

(b) Noisy images

3.07× 10−2 1.3× 10−3 6.63× 10−2

(c) RDFC results and the respective RMSE values

(d) Detail comparison of the noisy image (left), the denoised image (middle) and the
reference image (right).

Figure 3.7: Example images and results of the RDFC algorithm applied to these
images. All images have been rendered using PBRT and the scenes provided by
Rousselle et al. [RMZ13].

Chapter 4

Dual-Domain Image
Denoising

4.1 Overview

In contrast to RDFC, the dual-domain image denoising filter (DDID) [KZ13,
KZ15] is a more general image denoising algorithm, which is not specifically
tailored for denoising rendered images. It combines a variation of the bilateral
filter with local frequency domain filtering to estimate the noise at each pixel.
The estimated noise can then be subtracted from the original noisy image to
get a denoised result.

The used frequency domain filtering is similar to a wavelet shrinkage. The
idea behind wavelet shrinkage algorithms is the following: First, the noisy input
signal is transformed to a wavelet domain, which is essentially a transform
domain, where the coefficients contain both spatial and frequency information.
Then, all small wavelet coefficients are assumed to belong to the noise and are
weighted down accordingly to remove the noise. The denoised signal can then
be retrieved by inverting the wavelet transform. Wavelet shrinkage is based
on the assumption, that the representation of the signal without noise in the
transform domain is sparse, i.e. most coefficients should be zero. The noise
can therefore be removed by either thresholding small coefficients to zero or by
weighting them down using a continuous weighting function.

The motivation for combining spatial domain filtering with frequency do-
main filtering, is to overcome the limitations of these two filtering techniques.
[KZ13] Many state-of-the-art filtering techniques, such as Block-Matching 3d
denoising (BM3D) [DFKE07], use a combination of spatial and transform do-
main techniques to achieve high quality results. The bilateral filter has the
tendency to remove too many low-contrast details, while it keeps strong edges
very well. On the other hand, frequency domain filtering can introduce ringing
artifacts in presence of high contrast edges. These limitations are demonstrated
in Figure 4.1 on the next page. The iterative application of the combined spa-
tial and frequency domain filtering yields a denoising algorithm which offers a
similar denoising performance as other state-of-the-art methods such as BM3D,
but is much easier to implement. The combined spatial and frequency domain
filter is called dual-domain filter.

4.2. DUAL-DOMAIN FILTERING 30

(a) Noisy image (b) Bilateral
filtering

(c) Frequency
domain filtering

(d) Reference

Figure 4.1: Comparison of the denoising quality of the bilateral filter and the
used frequency domain filter. The bilateral filter loses details in the low contrast
region (top row), but can filter high contrast regions fairly well (bottom row).
On the other hand, the frequency domain filter introduces ringing artifacts near
high contrast edges, but loses less details than the bilateral filter in low contrast
regions.

In the following chapter, the explanation of the DDID filter will closely fol-
low the latest paper on dual-domain filtering [KZ15] and focus on denoising
of color images. For the sake of brevity, other interesting applications of the
dual-domain filter, such as removing JPEG artifacts or denoising artifacts in-
troduced by other denoising methods, will not be covered. The first section of
this chapter describes the dual-domain filter. Afterwards, it’s iterative applica-
tion to denoising is described and the implementation of the filter using Halide
discussed.

4.2 Dual-Domain Filtering

4.2.1 Noise estimation in the spatial domain

The first step of the dual-domain filter is to estimate the noise in the spatial
domain using a modified bilateral filter. The dual-domain filter assumes an
additive noise model, where pixel p of the noisy image y is given by yp = xp+np.
Here, xp denotes the true pixel value at position p and np additive Gaussian
noise with zero mean. The standard bilateral filter tries to estimate the true
value of pixel p as

x̄p =
∑
q∈Np

yqkq/
∑
q∈Np

kq , (4.1)

where kq is a bilateral kernel kq = k(‖yp − yq‖2 , ‖p− q‖2) and Np is the square
neighborhood of pixel p. The function k : R2 → R is a suitable kernel function,
which usually is the product of a range kernel and a spatial kernel. It takes
on only positive values and decreases monotonically in both arguments. Using
the bilateral filter, an estimate of the noise np at pixel p can be computed by

4.2. DUAL-DOMAIN FILTERING 31

subtracting the pixel value estimate x̄p from the noisy value yp:

n̄p = a(yp − x̄p) = a
∑
q∈Np

(yp − yq)kq/
∑
q∈Np

kq . (4.2)

The value a ∈ [0, 1] is simply a confidence factor, where a high value implies
that we trust the noise estimate.

4.2.2 Noise re-estimation in the frequency domain

Using the initial noise estimate n̄p and the bilateral weights kq, the final noise
estimate is then computed using a frequency domain filter. On an abstract
level, the frequency domain filter works as follows: First, the differences yq − yp
between the central pixel and all of its neighbors inNp are transformed using the
discrete Fourier transform. In contrast to a typical wavelet shrinkage, the dual-
domain filter now tries to estimate the noise. Instead of removing the noise from
the transformed signal by weighting down low amplitude coefficients, the filter
weights down high amplitude coefficients to get rid of the signal. The remaining
low amplitude coefficients should then represent only the noise. These can then
be transformed back to the spatial domain, to get the final noise estimate at
pixel p.

Before transforming the differences yq−yp to the Fourier domain, the spatial
domain noise estimate n̄p is subtracted from yp to make the difference estimate
less biased by the noise at the center pixel. Additionally, the differences are
multiplied by the bilateral weights kq. This helps to suppress high contrast
edges. These high contrast edges would lead to many low amplitude coefficients
in the frequency domain. The assumption of a sparse representation of the signal
does not hold for high contrast edges. This is essentially caused by the fact,
that the continuous Fourier transform of a box function is the sinc(x) = sin(x)/x
function, which only slowly approaches zero as x→ ±∞ and therefore results in
many small non-zero coefficients in the DFT of the box function. If a traditional
wavelet shrinkage is applied to such a signal, the removal of low amplitude
coefficients, of which many are due to the hard edge in the signal, causes ringing
artifacts. Figure 4.2 on the following page demonstrates the ringing effect. In
summary, the preprocessed differences are then

dq = (yq − (yp − n̄p))kq . (4.3)

The used local Fourier transform is also called windowed Fourier transform
or short-time Fourier transform (STFT). Although related to a wavelet trans-
form from a conceptual point of view, it’s technically not a wavelet transform.
Given a fixed radius of the local window, which is transformed using the Fourier
transform, the spatial and frequency resolution of the STFT are fixed. For a
wavelet transform, the resolution varies for the different frequencies of the signal.

The 2D Fourier coefficients of the modified differences are computed as

Df =
∑
q∈Np

dqe
−i 2π

2r+1 f ·(q−p), f ∈ {−r, . . . , r}2 . (4.4)

Note, that f and q − p are 2D vectors and the ”·” denotes the dot product.
This is the standard 2D DFT combined with coordinate transform of the input

4.2. DUAL-DOMAIN FILTERING 32

(a) Signal (b) Noisy signal (c) Power spec-
trum

(d) Denoised

Figure 4.2: Denoising of two different input signals by weighting down coeffi-
cients in the Fourier domain. From left to right the original signal, the noisy
signal, the power spectrum of the original signal (blue) and the noisy signal
(red) and the denoised result. For the top example, the denoising works quite
well, as the sparsity assumption holds and the small coefficients in the power
spectrum of the noisy signal mostly correspond to noise. For the bottom signal,
this is clearly not the case.

signal, such that the neighborhood around pixel p has indices ranging from −r
to r along both image axes. This does not affect the magnitude of the Fourier
coefficients. Since the filtering weights in the Fourier domain rely only on the
magnitude of the coefficients, the filtering does not depend on the indexing of the
signal. Choosing the indices this way, also simplifies the inverse DFT afterwards.
Also note, that we evaluate the Fourier coefficients Df for all f ∈ {−r, . . . , r}2.
Again, this is done for convenience, since this simplifies the guided formulation
in Section 4.2.3.

The resulting frequency domain coefficients are then multiplied with a fre-
quency domain kernel, which weights down large coefficients. The weights for
each frequency are computed as

Kf = K

|Df |2
/∑

q∈Np

k2
q

 . (4.5)

The function K : R→ R is monotonically decreasing and weights down large
coefficients. The coefficients are normalized by the sum of squared bilateral
weights. The weighted coefficients DfKf should now represent the noise in the
frequency domain. To get the final noise estimate, we need to calculate the
inverse Fourier transform. Because we are only interested in the noise estimate
for the central pixel, which has the spatial domain coordinates (0, 0), the inverse
Fourier transform reduces to computing the sum of the weighted coefficients and
dividing it by the number of coefficients:

n̂p = A
∑
f∈Fp

DfKf/(2r + 1)2 . (4.6)

4.3. THE DDID ALGORITHM 33

Fp is the set of frequencies and A ∈ [0, 1] is another confidence factor. The out-
put of the dual-domain filter in pixel p is then defined as DDFp(y, a,A, k,K) =
n̂p, where a and A are the confidence factors and k and K the kernel functions.
The final estimate of the true image is then x̂p = yp −DDFp(y, a,A, k,K).

4.2.3 Formulation as a guided filter

The algorithm can be extended to not only take the noisy image as an argument,
but also an additional guide image. The filter weights are then computed using
the guide image and are independent from the noisy image. Since the input
and the guide image are both real valued, but the DFT can transform complex
valued inputs, the filter is naturally formulated as a guided filter by substituting
y with z = g + iy in the previous equations, where g is the guide image, y the
noisy input image and i the imaginary unit.

The computation of weights in the spatial and frequency domain is then
adjusted to consider only the guide image:

kq = k(‖Re(zp − zq)‖2 , ‖p− q‖2) (4.7)

Kf = K

∣∣∣∣Df +D∗−f
2

∣∣∣∣2
/∑

q∈Np

k2
q

 (4.8)

While taking the real part of the differences as the argument for the bilat-
eral kernel function is trivial, the term 1

2 (Df + D∗−f) for the frequency weight
computation is slightly more complicated. It calculates the Fourier coefficients
of (gq − gp − Re(n̄p))kq from the Fourier coefficients of the complex signal
(zq − zp − n̄p)kq. This formula can be derived directly from the definition
of the discrete Fourier transform: Let z = x+ iy ∈ CN , N ∈ N be any complex
signal. The Fourier coefficients of z can then be written as:

Zk =

N−1∑
n=0

zne
−2πikn/N =

N−1∑
n=0

xne
−2πikn/N + i

N−1∑
n=0

yne
−2πikn/N .

Using the basic properties of complex conjugation, we get the equality

Z∗−k =

N−1∑
n=0

xne
−2πikn/N − i

N−1∑
n=0

yne
−2πikn/N .

Therefore it holds, that the values 1
2 (Zk + Z∗−k) are exactly the Fourier coef-

ficients of the real part of the signal z. The terms D−f do not require any
additional calculations, as they already have been calculated. Using a guide im-
age, the final noise estimate is computed as n̂p = Im(DDFp(g + iy, a,A, k,K)).

4.3 The DDID algorithm

The previously described dual-domain filtering algorithm is applied iteratively
to get a state-of-the-art denoising result. For the denoising filter, the weighting
functions in the dual-domain filter are defined as follows:

kn(x, y) = cos

(
min

(
π

2
,

√
x

Tnn

))n
e−

y
Sn , (4.9)

4.3. THE DDID ALGORITHM 34

Kn(x) = cos

(
min

(
π

2
,

√
x

V n

))n
. (4.10)

The weighting functions in the spatial and in the frequency domain both
depend on the iteration variable n, which counts down from the number of
iterations N to 1. The weighting function for the bilateral filter is the product
of a clamped cosine, which accounts for the difference in value, and a Gaussian
kernel, which weights down pixels with a large spatial distance to the center
pixel. Tn and Sn are scaling factors, which depend on the iteration variable.
They are defined as

Sn = 2σ2
sα

1−n
2N ,

Tn = γrσ
2α

n−1
N ,

where σ2 is the noise variance and γr, α and σs are positive constants. The
windows considered by the bilateral filter gets larger in every iteration, since
decreasing n increases the scaling factor Sn. On the other hand, the filtering
becomes more strict, because Tn decreases and therefore scales up the color dif-
ferences. The value V , which is used to scale the Fourier coefficient magnitude,
is constant over all iterations and depends only on the noise variance σ2 and a
constant scaling factor γf :

V = γfσ
2 .

In both weighting functions, the cosine gets raised to the power n and the
argument divided by n. This has the effect, that the falloff becomes steeper,
as n decreases. While the other parameters only scale the weighting functions,
raising to a power changes the overall shape. In the beginning, the weighting
functions resemble Gaussians. As n decreases however, the functions reject
outliers more aggressively. The division of x by n makes sure, that raising the
cosine to a power does not influence the width of the falloff functions too much.
Additionally, the confidence factors a and A are initially set to a quite small
value and then increase in every iteration:

an = An = cos

(
n− 1

N

π

2

)
.

Furthermore, the radius of the neighborhood considered by the filter is adapted
to the spatial filter width by setting it to:

rn = max(4, round(2
√
Sn/2)) .

A visualization of how different parameters change over the iterations is given
in Figure 4.3 on the next page.

The denoising filter uses the guided formulation of the dual-domain filter. In
the first iteration, the noisy image is also taken as guide image. After computing
the dual-domain filter in the first iteration, the guide image is then set to the
denoised image. The noisy image remains unchanged. This is then repeated in
every iteration.

To improve denoising quality, the color input image is first transformed by
applying a discrete cosine transform (DCT) along the color axis. The discrete
cosine transform is related to the Fourier transform, but uses only real numbers

4.3. THE DDID ALGORITHM 35

2468
10−1

102

105

n

Sn

Tn

2468
0

10

20

30

n

r

2468

0.2

0.4

0.6

0.8

1

n

a
,

A

−10010
0

0.2

0.4

0.6

0.8

1

x

k
(x

)

Figure 4.3: Change of DDID parameters over iterations as n decreases from N
to 1. The number of iterations N is set to 8. In plot of the spatial kernel kn(x),
the line colors go from blue to red as the iteration variable n decreases. Figure
based on the parameter visualization in [KZ15].

and represents the signal as a sum of cosine functions. The variant of the DCT
used for the DDID algorithm is defined as

yk = wk

N−1∑
n=0

xn cos
(π

2N
(2n+ 1)k

)
, k = 0, 2, . . . , N − 1, (4.11)

where yk are the output coefficients, xk the coefficients of the input signal and

wk =

1√
N

if k = 0√
2
N if 1 ≤ k ≤ N − 1 .

(4.12)

The transform along the color axis corresponds to a change of color space and
is implemented as the multiplication of the three-dimensional color vector at
each pixel by a three-by-three DCT matrix M . The inverse DCT can easily be
calculated by exploiting that M is orthogonal and therefore the inverse equals
the transpose. This is a desirable property, since an orthogonal transform does
not change the variance of the noisy input. [KZ13] In summary, the DDID
algorithm is described by the following pseudocode:

4.4. IMPLEMENTATION USING HALIDE AND RESULTS 36

DualDomainImageDenoising(y, σ2)

1 // Define constants
2 N = 8
3 σs = 13
4 γr = 5.3/N
5 γf = 13/N
6 α = e15

7 V = γfσ
2

8 // Apply a DCT transform along the color channel
9 y = dctc(y)

10 // Initially, the noisy image is also used as guide image
11 x = (1 + i) · y
12 for n = N to 1

13 Sn = 2σ2
sα

1−n
2N

14 Tn = γrσ
2α

n−1
N s

15 kn = [x, y] cos
(

min
(
π
2 ,
√

x
Tnn

))n
e−

y
Sn

16 Kn = [x] cos
(
min

(
π
2 ,
√

x
V n

))n
17 rn = max(4, round(2

√
Sn/2))

18 an = An = cos
(
n−1
N

π
2

)
19 // Update the guide image
20 x = (1 + i) · y − Im(DDF(x, a,A, kn,Kn))
21
22 // Transform the result back to the original color space

23 x = dct−1
c (Re(x))

24 return x

The inputs to the algorithm are the noisy image y and noise variance σ2. The
variance is assumed to be known, estimated by another technique or manually
specified. The function dctc is the DCT transform along the color dimension
and kn and Kn are functions of the arguments listed within the square brackets.

4.4 Implementation using Halide and results

Even though the DDID algorithm is less complex than RDFC, the implemen-
tation proved to be more difficult than expected. The implementation of the
spatial domain bilateral filter is straightforward. Similar to RDFC, the bilateral
filter has been implemented naively. The performance bottleneck is clearly the
frequency domain filtering step, as the Fourier transform needs to be evaluated
at each pixel on windows of up to 53× 53 pixel.

With most programming languages, computing a Fourier transform is simply
a matter of using a good FFT library, such as the Fastest Fourier Transform
in the West (FFTW) [FJ05] library. Using Halide however, as of writing this
thesis, external C functions can only be called if the Halide code is scheduled
to run on the CPU. Since we were mostly interested in using Halide to target
the GPU, external libraries could not be used.1 There exists a basic FFT
implementation written in Halide, which is part of the Halide code examples and

1There seem to exist workarounds for this problem, but they are not very clean and could
easily break in newer Halide versions.

4.4. IMPLEMENTATION USING HALIDE AND RESULTS 37

is based on the work of Govindaraju et al.[GLD+08]. Although the Halide FFT
implementation gives reasonable performance for standard use cases, it does
not effectively handle the special case when the input size is prime or contains
large prime factors. In these cases, traditional FFT algorithms, which rely on
factoring the problem size into prime factors, offer no significant performance
improvement over a naive DFT implementation.

Performing a FFT on prime sized inputs can be accelerated in multiple ways.
Two well-known algorithms for this problem are Rader’s algorithm [Rad68] and
Bluestein’s algorithm [Blu70]. Both algorithms reformulate the problem of com-
puting the DFT of a prime sized input such that it can be solved by computing
the FFT of a problem of a different size. This can then be done by using an
existing FFT implementation, as the new problem size usually is composite
or even a power of two. The key idea of both algorithms is to use the basic
properties of the complex exponential terms in the DFT matrix.

Bluestein’s algorithm works by expressing the DFT of length N as a con-
volution of two sequences of length N − 1. This convolution can be computed
efficiently by using the convolution theorem and an existing FFT implementa-
tion. The sequences used in Bluestein’s algorithm need to be zero padded to a
length of at least 2N − 1 to compute the convolution. [Smi07] Because we need
to compute the local 2D Fourier transform in two passes, the DDID algorithm
needs a lot of memory to store the intermediate result. The local neighborhood
of each pixel has to be stored at the same time to allow for parallelization over
pixels. Therefore, Bluestein’s algorithm is less suited for the DDID algorithm,
as it would increase memory usage.

Rader’s algorithm also reformulates the DFT as a convolution of two se-
quences, but in a way that does not require zero padding. Thus, we tried ap-
plying it to accelerate the existing Halide FFT implementation. The technical
details of Rader’s algorithm are explained in Appendix A. We implemented the
algorithm on top of the existing Halide FFT implementation in a non-recursive
fashion and without zero padding.

Unfortunately, the implementation of Rader’s algorithm was slower than
the naive DFT for our problem sizes. Rader’s algorithm, similar to Bluestein’s
algorithm, tries to decrease the complexity of the Fourier transform in the
length of the input N , but introduces larger constant factors to the compu-
tation. For a black and white image of size 53× 53, our naive DFT implemen-
tation took 8.15× 10−4 s and Rader’s algorithm 1.368× 10−3 s. The unmod-
ified Halide FFT, which falls back to the naive DFT for prime sized inputs,
took 1.288× 10−3 s. All times were recorded by executing the respective algo-
rithms 25 times on a single thread on an Intel E5645 processor at 2.67 GHz.
For Rader’s algorithm, the DFT coefficients, all required permutations and the
Fourier transform of the sequence, which is independent of the signal, were
precomputed at compile time. To put the speed of the different FFT implemen-
tations in perspective: Matlab’s fft2 method took only about 2.55× 10−4 s on
the same image. The overhead of the Halide FFT was too big to achieve any
performance improvements. The final implementation of the DDID algorithm
on the GPU therefore uses a naive DFT implementation.

Aside from the Fourier transform, the implementation of the DDID algo-
rithm on the GPU is straightforward. As already mentioned, memory usage
was an issue, since the Fourier transform needs to be computed in two steps.
For radii smaller than 6, it is possible to store the local neighborhood of each

4.4. IMPLEMENTATION USING HALIDE AND RESULTS 38

Image size 256 × 256 512 × 512
B/W Color B/W Color

Matlab 26.0 46.9 90.9 180.0

Halide (GPU) 2.0 4.6 7.0 16.7

Halide (CPU) 45.7 393.8 210.8 1779.6

Table 4.1: Execution times in seconds for different image sizes. Times are
averaged over three runs of the DDID filter. The CPU code was executed on
two Intel E5645 processors with a total of 12 cores at 2.67 GHz and the GPU
code on a Nvidia GTX Titan.

pixel at the same time in one global memory buffer (at least for images of size up
to one mega-pixel). Note that using shared memory was not an option for this,
as the amount of shared memory is too limited. For larger radii, the computa-
tion is scheduled to run in tiles, where the tiles are processed serially and the
computation within each tile is parallelized on a per pixel level. As already has
been noted by Knaus and Zwicker [KZ13], no sliding window optimization, as
would typically be used to compute the standard short-time Fourier transform,
is possible in the DDID algorithm.

For a summary of the running time of the algorithm for different image sizes
and comparison with the existing Matlab implementation [KZ15], see Table 4.1.

The Halide CPU implementation is quite slow, as the naive DFT is not nearly
as fast as the FFT implementation used by Matlab. This demonstrates, that the
existing Matlab code is much faster than a naive parallel CPU implementation.
The main focus was however the GPU implementation, which is about 10 times
faster than the Matlab code. All times are heavily dominated by the execution
time of the last iteration, where the window radius is 53 × 53. For the GPU
implementation, the last iteration amounts for about 65% of the total execution
time. For the CPU implementation, the fraction increases to about 78%. A few
examples of the application of the filter are shown in Figure 4.4 on the next
page.

4.4. IMPLEMENTATION USING HALIDE AND RESULTS 39

(a) Original images

(b) Noisy images

3.1× 10−3 1.7× 10−3 1.8× 10−3

(c) Dual-domain image denoising results and the respective RMSE values

(d) Detail comparison of the noisy image (left), the denoised image (middle) and the
original image (right).

Figure 4.4: Example images and results of the dual-domain denoising algorithm
applied to these images. All images have been corrupted by zero-mean Gaussian
noise with variance 0.002. The same variance was then used as a parameter for
the DDID algorithm. Despite the spatial domain filtering step, some slight
ringing artifacts still occur near sharp edges.

Chapter 5

Denoising for
Gradient-Domain
Path Tracing

5.1 Overview

As already discussed, one fundamental problem of path tracing algorithms is
their slow convergence rate. While filtering algorithms such as RDFC can be
very useful for a lot of applications, they cannot accelerate the underlying ren-
dering algorithms. Gradient-domain rendering algorithms have been introduced
recently as a promising approach to speed up unbiased rendering.

Gradient-domain rendering was originally introduced as gradient-domain
Metropolis light transport (G-MLT) [LKL+13, MRK+14]. Metropolis light trans-
port (MLT) [Vea98] is a rendering algorithm, which tries to reduce rendering
time by distributing the samples in path space using a probability density which
is approximately proportional to the contribution each path makes to the final
image. The gradient-domain Metropolis light transport algorithm improves on
the standard MLT algorithm by also sampling image space gradients of the out-
put image, i.e. differences between the values of (neighboring) pixel. The moti-
vation behind gradient-domain rendering algorithms is the observation, that the
gradients in a natural image are much sparser than the image itself. There are
often large areas, where the image gradients are almost zero. The G-MLT algo-
rithm simultaneously samples a coarse base image and horizontal and vertical
image gradients. The sampled gradient information is then used to distribute
more samples in regions where the image has a large gradient. The idea of G-
MLT is to distribute samples where the image changes, and not where it’s just
bright.

The final image is then reconstructed by taking into account the sampled
base image as well as the sampled gradients. The reconstructed image should be
close to the base image and its gradients close to the sampled gradients. This op-
timization problem amounts to solving a screened Poisson equation [BCCZ08].
This can be done efficiently on the GPU. The reconstructed image is then an
unbiased estimate of the true image. An example of the reconstruction and the

5.1. OVERVIEW 41

Base image dx dy Result (L2-norm)

Poisson Solver

Figure 5.1: The base image and the gradients in both horizontal and vertical
direction are combined using a Poisson solver to get the result on the right.

input is shown in Figure 5.1. Note, how the gradient images contain mostly
zero or near-zero values.

In practice, the MLT algorithm can often give very non-uniform convergence
in image space. Some regions in the final image may converge very quickly, while
others remain too dark or too bright for a very long time. The noise is much
less uniform than in naive path tracing. The G-MLT algorithm inherits these
convergence issues.

However, it turns out that sampling gradient information can also benefit
conventional path tracing. The gradients can be sampled with less variance
than the pixel values and therefore reduce the noise in the reconstructed final
image by a significant factor. The introduction of both gradient-domain path
tracing (G-PT) [KMA+15] and gradient-domain bidirectional path tracing (G-
BDPT) [MKA+15] proved that sampling gradients can significantly speed up
Monte Carlo rendering, even without concentrating the samples on regions of
change in the image. Like G-MLT, both these techniques can be used to produce
unbiased images.

Since gradient-domain rendering algorithms give a considerable improvement
in the unbiased setting, it is interesting to investigate whether they can also be
used effectively in combination with a biased filtering technique. For many
applications, rendering until full convergence is not a viable option and using a
suitable filter is key to get a usable result from a path tracer. Filtering the results
from gradient-domain path tracing is non-trivial, since the noise characteristics
are different from the noise characteristics of conventional path tracing.

We propose a novel filtering algorithm, which extends the Poisson recon-
struction of the final image to achieve a denoising effect. We do this by con-
straining the final image to be locally close to the subspace spanned by local
feature patches. In other words, we want each small patch of the reconstructed
image to be close to a weighted sum of small feature patches.

Similar to RDFC, we compute multiple candidate filters using different pa-
rameters. We then estimate the error of each candidate filter using the simple
and general error estimation technique proposed by Bauszat et al. [BEEM15].
The idea of this technique is to sparsely sample reference pixels, which are used
to compute a sparse error estimate for each candidate filter. The error estimates
can then be interpolated and used to compute a filter selection map.

In the first part of this chapter, a short explanation of the technical details
of gradient-domain path tracing is given. This will mostly focus on the Poisson
reconstruction, since our filter extends the standard reconstruction. After that

5.2. GRADIENT-DOMAIN PATH TRACING 42

our new filtering technique is explained and evaluated.

5.2 Gradient-domain path tracing

Gradient-domain rendering relies on sampling finite difference gradients between
neighboring pixels. Instead of only sampling pixel values Ii, also differences
∆ij = Ii−Ij between neighboring pixels i and j are sampled. Like conventional
path tracing, G-PT samples a fixed number of paths going through each pixel.
These paths are called base paths and are accumulated in the base image. From
each base path, four offset paths going through the four directly neighboring
pixels are generated. The mapping which is used to generate the individual
offset paths from the base path is called shift mapping. The shift mapping is
deterministic and tries to map the base path to an offset path with similar
throughput. This means, that each offset path should carry more or less the
same amount of light as the base path. The difference in throughput between
the base and an offset path should ideally be very small, in order to minimize
the variance of the sampled gradient. The four sampled differences are then
accumulated into gradient images. A separate gradient image is stored for each
of the four shifting directions.

Conceptually, the described sampling scheme amounts to merging the two
path integrals Ii and Ij under one integration sign and then Monte Carlo in-
tegrating the resulting integral. The shift mapping reduces variance, since the
offset path is highly correlated to the base path, instead of randomly generated
from scratch. In general, similar tricks can be used to reduce the variance of the
Monte Carlo estimate of differences or sums of arbitrary Monte Carlo integrals.
Reusing the already generated random numbers to compute a correlated sample
is known as common random numbers variance reduction.

A good strategy to find offset paths with a similar throughput as the base
path, is to try to reconnect the offset path to the existing base path as soon as
possible. In order to to this, the shift mapping has to make a distinction between
the specular and diffuse vertices of a path. A material is classified specular, if
incoming light from a fixed direction can only be refracted or reflected in a
discrete set of directions. An illustration of the shift mapping used in G-PT is
given in Figure 5.2. It works as follows: First, a ray is traced through the offset
pixel and through the chain of following specular interactions, until a diffuse
vertex is found. In the illustration, this means that the offset ray is traced
through the glass plate and then hits the diffuse ground. The chain of specular
vertices consists of vertices x1 and x2 in the base path and x̃1 and x̃2 in the offset
path. Since the diffuse vertex on the ground is followed by a specular vertex in
the base path, we cannot yet reconnect to the base path. If we would connect
x̃3 directly to vertex x4 of the base path, the resulting path would carry no
light. Instead, the path is continued from vertex x̃3 such that the half-vector at
this vertex projected onto the tangent plane matches the projected half-vector
at vertex x3 of the base path. The offset path is traced through the following
specular chain and can then be reconnected in our example, since the base path
has two consecutive diffuse vertices. If there was only one diffuse vertex, we
would again match the half-vector and trace the next specular chain and so on.

G-MLT and G-BDPT use slightly different shift mappings and rely on the
manifold walk [JM12] algorithm. This algorithm allows to determine an outgo-

5.2. GRADIENT-DOMAIN PATH TRACING 43

Diffuse

Specular

Half-vector

Light

Camera

Image

x0

x1

x̃1

x2

x̃2

x̃3 x3

x̃4

x4
x5

x̃5

x6x̃6

x7

x8

Figure 5.2: The base path (solid line) is mapped to the offset path (dashed line).

ing direction at a diffuse vertex, in our example vertex x̃3, such that the offset
path directly reconnects with the base path after the following specular chain
(the offset path could connect at vertex x6 in the example). This means, that
the shift mappings used in G-MLT and G-BDPT do not require two consecutive
diffuse vertices to reconnect to the base path. They can thus give slightly better
offset paths, at the cost of requiring more time to compute the shift mapping.

Gradient-domain rendering works very well, if the shift mapping is successful
and the offset path has nearly the same throughput as the base path. The
gradients in natural images are also typically sparse and have overall less energy
than the color image. [LKL+13, KMA+15] We can therefore expect the true
difference between two neighboring pixels to have a small magnitude most of the
times. The variance in Monte Carlo integration is proportional to the magnitude
of the integrand and thus the finite differences can be sampled with very low
variance compared to the image itself. A complete analysis of the variance
reduction achieved using gradient-domain rendering is given by Kettunen et al.
[KMA+15].

Problematic are pixels, where the shift mapping fails to find a similar path.
This can for example happen on edges of objects, where a small shift in screen
space can drastically change the throughput of the resulting path compared to
the throughput of the base path. Since the path is always shifted by one pixel,
the quality of the sampled gradients also depends on the image resolution. If the
image resolution is low, the shift mapping will typically fail more often, since
the shift covers a greater distance in world space. The shift mapping is also
more likely to fail if there are many specular interactions involved.

There are a variety of technical difficulties involved in the sampling process,
which go beyond the scope of this short overview and will not be covered here.
The shift mapping is for example not necessarily bijective. This is one reason
why all four gradient directions are sampled instead of just one vertical and one
horizontal direction, which would in theory contain the same information. Also
merging the two integrals Ii and Ij under one integration sign requires a change
of variables in one of the integrals, which means that the integrand, i.e. the
throughput, has to be multiplied by the Jacobian determinant corresponding to
this change of variables.

5.2. GRADIENT-DOMAIN PATH TRACING 44

α = 0 α = 0.001 α = 0.1 α = 0.3 α = 1 α =∞

1.922 0.034 0.024 0.020 0.039 0.275

Figure 5.3: Comparison of the L2-reconstruction using different values for α.
The top row of images is the reconstruction result and the bottom row the
per-pixel error. The quality of the reconstruction is measured by the RMSE,
denoted below each error map.

After the sampling process is completed, the final image is reconstructed by
solving a Poisson equation. The four sampled gradient images are first combined
into just two images, because each gradient was sampled in both directions. For
two neighboring pixels i and j, the differences ∆ij = Ii−Ij and ∆ji = Ij−Ii have
been sampled. They both estimate the same difference between neighboring
pixels, just with a different sign. They can be merged into one value by reversing
the sign of the second gradient and then computing the average. The input to
the reconstruction is then the sampled base image and the sampled horizontal
and vertical gradients. The final image is then reconstructed as the solution of
the Poisson problem

I = arg min
Î

∥∥∥α(Î − Ib)
∥∥∥2

2
+

∥∥∥∥(HdxÎ

Hdy Î

)
−
(
Idx

Idy

)∥∥∥∥2

2

, (5.1)

where Ib denotes the base image and Idx and Idy the sampled horizontal and
vertical gradients. The images are all interpreted as n × 3, matrices, where n
is the number of pixels and each row represents the RGB values of one pixel.
The L2-norm is calculated as if the n × 3 matrix was a vector of length 3n
and is simply the root of the sum of squared matrix components. The matrices
Hdx and Hdy compute the finite difference gradients of an image in horizontal
and vertical direction respectively. The parameter α controls the importance
of the base image. If it is set too high, the reconstructed image will contain a
lot of noise from the base image. If it is set too low, the reconstructed image
can suffer from color shifting. The effect of changing α is demonstrated in
Figure 5.3. If α equals zero, the base image is not used at all and the correct
brightness cannot be determined for the reconstruction. The gradients do not
contain any information about the absolute brightness. Increasing α weights
the information from the base image more and reduces color shift. Setting α to
infinity removes the effect of the gradients entirely. For the given sampled data
in Figure 5.3, a value of 0.3 is the optimal α in terms of the RMSE.

The optimization problem above is just a least squares problem and can be

5.2. GRADIENT-DOMAIN PATH TRACING 45

(a) L2-norm (b) L1-norm

Figure 5.4: Using the L2-norm for the reconstruction, gradient outliers can cause
visibly distracting artifacts. These artifacts are removed by using the L1-norm.

solved using the normal equations. The Poisson problem can be written as

I = arg min
Î

∥∥∥∥∥
αInHdx

Hdy

︸ ︷︷ ︸

A

Î −

αIbIdx

Idy

︸ ︷︷ ︸

b

∥∥∥∥∥
2

2

, (5.2)

where In denotes the identity matrix of size n. The unique solution I is then
given as

I = (ATA)−1AT b (5.3)

The matrixA is very sparse and the solution can thus be computed efficiently.
It can be shown, that the reconstructed image I is an unbiased estimate for the
true image. [LKL+13]

In practice it is often beneficial, to replace the squared L2-norm in the opti-
mization problem by the L1-norm. The L1 optimization problem can be solved
using the iteratively reweighted least squares (IRLS) algorithm. The iterative
optimization works by solving the least squares problem repeatedly and weight-
ing down constraints, which lead to a large error in the reconstruction. The
sampled gradients can have non-zero curl, which means that there is no image
that simultaneously satisfies all gradient constraints. If the curl is large, the
conflicting gradient information can cause very distracting errors in the recon-
struction. These kind of errors are mostly fixed by resorting to the L1-norm,
see also Figure 5.4. An extreme example of conflicting gradient information is
here at top of the bottle, where the light source is directly reflected in the glass
material. Since the reflection of the light on the bottle only covers a few pixels,
the offset paths will almost never be able to reconnect to the base path. The
shift mapping thus fails very often and the variance of the sampled gradients is
high. Reconstructing under the L1-norm removes these kind of artifacts entirely
in this example. Note, that the reconstruction using the L1-norm is a non-linear
operation and introduces some bias to the result. Most notably, images recon-
structed using the L1-norm can be slightly too dark. The L1-optimization is
solved using the following IRLS algorithm:

5.3. DENOISING USING SUBSPACE PROJECTIONS 46

SolveL1(A, b,numIter)

1 W = IA.rows
2 for i = 1 to numIter

3 // Solve weighted least squares problem minx ‖W (Ax− b)‖22
4 x = (ATW 2A)−1ATW 2b
5 // Compute weights W
6 e = Ax− b
7 for j = 1 to A.rows
8 Wjj = 1/(‖ej‖2 + regInit · regIteri−1)
9 W = W ·A.rows/ ‖W‖1

10 return x

where A is the constraint matrix and b is right-hand side of the overdetermined
equation system. The number of iterations numIter of the algorithm has to be
set by the user, a default of 7 iterations works well most of the time. The scalar
‖ej‖2 is the norm of row j of the matrix e and the value ‖W‖1 is the sum of all
entries in the matrix W . The values regInit and regIter are constants, set to
0.05 and 0.5 respectively.

5.3 Denoising using subspace projections

5.3.1 Extending the Poisson problem by patch constraints

We extend the original Poisson problem by additional constraints to get a de-
noising effect. The new constraints can be motivated by first having a look at an
alternative idea. One way to extend the Poisson reconstruction by denoising, is
to solve the optimization under a sparsity constraint, similar to what is done in
denoising techniques using overcomplete dictionaries [EA06]. The idea behind
these denoising algorithms is similar to the idea behind wavelet shrinkage. The
assumption is that the noise-free image has a sparse representation in a certain
basis. Wavelet shrinkage algorithms work by transforming the noisy image to a
wavelet basis and then weighting down small basis coefficients and transforming
back to the standard basis. Dictionary based methods on the other hand use an
overcomplete system of vectors called dictionary. A vector in the dictionary is
called dictionary entry or atom. The idea is to represent the denoised image as
a sparse linear combination of dictionary entries. One advantage of dictionary
techniques over wavelet shrinkage is that the dictionary can have any number
of entries, and usually has a larger number of entries than dimensions. The
entries can be arbitrary vectors and do not need to be orthogonal or normal-
ized. A common approach is to learn dictionary entries from a set of noise-free
images. We tried several variants of explicitly constructing a dictionary from
the features, such that the reconstructed image is locally the sum of small fea-
ture patches. The Poisson optimization problem is then modified to solve for a
sparse coefficient vector c as

c = arg min
ĉ

∥∥α(Sĉ− Ib)
∥∥2

2
+

∥∥∥∥(Hdx

Hdy

)
Sĉ−

(
Idx

Idy

)∥∥∥∥2

2

, subject to ‖ĉ‖1 < λ ,

(5.4)
where S is the dictionary matrix. The constraint on the L1-norm of the coeffi-
cients enforces sparsity. The constant λ controls the sparsity of the coefficient

5.3. DENOISING USING SUBSPACE PROJECTIONS 47

0 10 20

0

0.5

1

(a) Base image (blue) and
gradients (red)

0 10 20

0

0.5

1

(b) Global optimization

0 10 20

0

0.5

1

(c) Local optimization

Figure 5.5: Comparison of the reconstruction using global optimization and
using local optimization (both using the L2-norm) for a 1D image. The local
reconstruction has been computed by solving the reconstruction on a patch of
radius 2 around each pixel and then averaging the local solution patches.

vector. The final image can then be computed as I = Sc. The least squares
problem under an L1-norm constraint on the solution is called Lasso problem.
Even though there exist efficient solvers for this problem [VF08], this denois-
ing scheme does not work very well for gradient-domain rendering. Traditional
dictionary based denoising methods run constrained least squares optimization
methods on small image patches and then combine the local patches into one
result by averaging. To get the full benefit out of the sampled gradients, it is
necessary to solve the Poisson optimization problem for the whole image, or
very large regions, at once. Solving only locally cannot effectively remove low
frequency noise from the base image. This effect is demonstrated on a 1D exam-
ple in Figure 5.5. Furthermore, directly representing the reconstructed image
as a sum of features often filters out image content not present in the features.

A much better approach is to constrain the reconstructed image to be locally
close to a sum of feature patches – and not necessarily equal. A visualization
of this is given in Figure 5.6. We define the local feature subspace Fp to be
the subspace spanned by the feature patches around pixel p. The reconstructed
image should be locally close to this subspace. We achieve this by extending
the Poisson problem by a patch constraint term as

I = arg min
Î

∥∥∥α(Î − Ib)
∥∥∥2

2
+

∥∥∥∥(Hdx

Hdy

)
Î −

(
Idx

Idy

)∥∥∥∥2

2

+

n∑
p=1

Pp(Î) , (5.5)

where p iterates over all pixels and Pp(Î) is defined as

Pp(Î) =
∥∥∥Dp · (BpBTp − Is)ΓpÎ

∥∥∥2

2
. (5.6)

The matrix Γp ∈ Rs×n selects the pixels in the local neighborhood Np of radius
r of pixel p and s denotes the number of pixels in such a patch, i.e. s =
(2r + 1)2. The whole unknown image Î is mapped onto a vector containing
only the pixels of the patch Np. The matrix Dp ∈ Rs×s is a diagonal weighting
matrix, weighting the patch constraints at each pixel. Bp is a s × m matrix,
where m denotes the dimension of the local feature subspace. The columns of

5.3. DENOISING USING SUBSPACE PROJECTIONS 48

FeaturesUnknown image

p

Î

ΓpÎ

weighted
sum of:

≈

?

Vectors spanning the local feature subspace Fp

Figure 5.6: Visualization of the patch constraint for pixel p.

Bp are basis vectors of the local feature subspace. The projection of the local
image patch onto the feature subspace is given by definition as

projFp(ΓpÎ) =

m∑
i=1

〈bpi,ΓpÎ〉bpi = BpB
T
p ΓpÎ , (5.7)

where bpi is the i’th column of the matrix Bp and 〈·, ·〉 denotes the dot product.
The projection of a vector onto a subspace is exactly the vector in the subspace
closest to the original vector. By measuring the distance of the projected vector
BpB

T
p ΓpÎ to the original vector ΓpÎ one can thus measure how close the vector

is to the subspace. For any vector contained in the subspace, the distance will
be zero.

The matrix Bp is computed using a singular value decomposition (SVD). The
SVD factors any matrix M ∈ Rm×n into a product of the form USV T , where
U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices and S ∈ Rm×n is a
rectangular diagonal matrix containing the singular values. The first n columns
of U then form a basis of the range of M (assuming that the columns of M are
linearly independent). We use the SVD to compute an orthogonal basis of the
feature subspace. Similar to Moon et al. [MCY14] we use a truncated SVD to
remove noise from the feature subspace. The vectors in U are ordered by the
magnitude of the corresponding singular value. The smaller the singular value
gets, the more noise is captured in the corresponding singular vector. This is
demonstrated on an example in Figure 5.7 on the next page. By discarding
singular vectors with small singular values, one can remove noise from the sub-
space. In practice, we just discard the singular vector with the smallest singular
value. Moon et al. [MCY14] use a more sophisticated scheme to discard basis
vectors, but it seems that the number of discarded vectors does not affect the
result that much in our technique. Other filtering parameters have a bigger
influence on the filter result.

The matrix Dp ∈ Rs×s is a diagonal matrix, which weights the patch con-
straints for each pixel. The weights are crucial to control the importance of
the patch constraints. The detailed weight computation is explained in Sec-

5.3. DENOISING USING SUBSPACE PROJECTIONS 49

(a) Features spanning Fp

0.4312 0.1472 0.0794 0.0340 0.0307 0.0139 0.0037

(b) Orthogonalized features and their corresponding singular values

Figure 5.7: The feature vectors for a small patch and the corresponding orthog-
onal basis computed by the SVD. The smaller the singular values get, the more
noise is captured in the corresponding singular vector.

tion 5.3.2. Even when extended by patch constraints, the optimization is still a
least squares problem. The optimization problem can be written as

I = arg min
Î

∥∥∥∥∥

αIn
Hdx

Hdy

D1(B1B
T
1 − Is)Γ1

D2(B2B
T
2 − Is)Γ2

...
Dn(BnB

T
n − Is)Γn

︸ ︷︷ ︸

A

Î −

αIb

Idx

Idy

0
0
...
0

︸ ︷︷ ︸

b

∥∥∥∥∥
2

2

. (5.8)

The constraint matrix A is sparse, but also very large. The matrix has
(3 + s)n rows and n columns. Even though it is very sparse, the number of
non zero entries is roughly (5 + s2)n, since a s × s matrix has to be stored for
each pixel. This slightly overestimates the true number of non-zero coefficients,
because this number does not account for the special treatment of boundary
pixels. The number of non-zero coefficients grows proportionally to r4. We
therefore use a radius r of only 2 in our implementation. For a one megapixel
image, storing all the non-zero matrix coefficients as single-precision floating
point values requires around 2.6 gigabytes of memory. Solving the least squares
problem efficiently is thus quite challenging. The implementation using CUDA
is discussed in Section 5.3.4.

As with the original Poisson problem, it is beneficial to replace the L2-norm
with the L1-norm. The system can then be solved using iteratively reweighted
least squares, just as the original Poisson problem. In order to avoid changes
in brightness due to the L1-reconstruction, we compute a second reconstruction
pass using the noisy base image and the gradients from the result of our ex-
tended reconstruction as inputs. The second pass is simply a standard Poisson
reconstruction using the L2-norm and a value of 0.05 for α. The low value of α
limits the contribution of the noisy image to the overall brightness.

5.3. DENOISING USING SUBSPACE PROJECTIONS 50

5.3.2 Patch constraint weights

Even though the feature subspace already includes information about edges in
the image, the patch constraints still can lead to strongly overfiltered results if
used without a suitable weighting matrix Dp. It does not make sense to enforce a
common patch constraint on very different pixels. There are also always details,
which are not present in the features. The weights can to some degree prevent
overblurring in this case.

We weight the patch constraints by multiplying each row of (BpB
T
p − Is)ΓpÎ

with a suitable weight. Each row of (BpB
T
p − Is)ΓpÎ measures the difference

between the projection onto the feature subspace and the original patch in one
pixel for each color channel. By weighting a row, it is possible to control the
importance of the patch constraint at one pixel. We weight each row by a factor
which depends both on the distance from the respective neighbor pixel to the
center pixel of the patch as well as the variance of the Monte Carlo estimate at
both pixels. Since the constraints are weighted based on the variance, our filter
is consistent and the filtered image converges to the true image if more Monte
Carlo samples are computed.

We calculate weights very similar to the weights used in RDFC. There are
a few differences, which are worth discussing. First of all, the weights are not
normalized. In our context, it does not make sense to have them sum up to
one. The weights control the importance of the different rows in the equation
system. Like RDFC, we compute both color and feature weights and then take
their minimum to get the final weights.

We compute the color weights from the solution of the original Poisson prob-
lem (using the L1-norm). The variance of the L1-reconstruction is computed
using a two-buffer approach. We accumulate samples in two separate buffers,
both for the base image and the gradients. We then solve the L1-reconstruction
two times to compute the two-buffer variance. The resulting variance is then
slightly blurred to reduce noise and the final variance estimate is then the max-
imum of the blurred two-buffer variance and the raw two-buffer variance. Tak-
ing the maximum prevents the variance estimate from being systematically too
small, which can be an issue when dealing with strong outliers. We compute
the color distance between two pixels as

∆2
i (p, q) =

(ui(p)− ui(q))2 − (Vari[p] + Vari[q])

ε+ k2
c (Vari[p] + Vari[q])

, (5.9)

where p denotes the center pixel of the patch and q a neighboring pixel. The
formulation is identical to the distance used in RDFC, except that we replace
min(Vari[p],Vari[q]) by Vari[q] in the numerator. In RDFC, the minimum was
taken to avoid blurring the central pixel p if the pixel q had a high variance.
The patch constraints however filter both the central and the neighboring pixel.
The color distances ∆2

i (p, q) are then used to compute NL-means color weights
wc(p, q) just like in RDFC. We compute the distance between two patches as

d2(P (p), P (q)) =
1

3(2f + 1)2

3∑
i=1

∑
n∈P (0)

∆2
i (p+ n, q + n) , (5.10)

where f is the radius of the NL-means filter patches and P (0) denotes all pixel
offsets within a patch. The color weights are computed from the patch distance

5.3. DENOISING USING SUBSPACE PROJECTIONS 51

(a) Without threshold (b) With threshold

Figure 5.8: Effect of thresholding patch constraint weights and adjusting feature
vectors accordingly.

as
wc(p, q) = exp(−max(d2

c(P (p), P (q)), 0)) (5.11)

We do not use a symmetric weight formulation, as this would not make sense
for our filtering technique. We also do not use the patch-wise extension. The
feature distances are measured as

Φ2
j (p, q) =

(fj(p)− fj(q))2 − (Varj [p] + Varj [q])

ε+ k2
f (Vj [p] + Vj [q]))

, (5.12)

where Vj [p] = max(10−3,Varj [p], ‖∇j [p]‖2) and Vj [q] is defined equivalently.
We do not use the feature specific thresholds τj and instead simply normalize
all features to have values in [0, 1]. We again do not use the minimum in the
numerator. Furthermore, for features with multiple color channels, e.g. the
normals, we view each channel as one individual feature. We compute NL-
means feature patch distances d2

fj
(p, q) equivalently to d2

c(p, q). The feature
weights are then given as

wf (p, q) = min
j∈{1,...,M}

exp(−max(d2
fj (p, q), 0)) . (5.13)

From the color and feature weights we compute the weights

w(p, q) = min(wc(p, q), wf (p, q)) (5.14)

Weighting the rows of the local patch constraint can in some cases not be
sufficient. If the row corresponding to one pixel is weighted to nearly zero, it
does not mean that this pixel has no influence on the reconstruction of the
local patch anymore. The value of this pixel still occurs in the equations for the
other pixels in the patch. An example of a case where this is a problem is shown
in Figure 5.8a. The bright surface on the right leads to visible color bleeding
artifacts. We reduce this problem by setting weights below a small threshold to
zero. We then also set pixels in the features to zero if their weight is zero. This
can be understood as reshaping the local neighborhood to not include any pixels
which are very different from the central pixel. The new neighborhood is then
in general not square anymore. The modified feature vectors are orthogonalized
using SVD after the thresholding step. The pixels with zero weights then do

5.3. DENOISING USING SUBSPACE PROJECTIONS 52

Candidate filters Sparse reference Sparse error Interpolated error Selection map

1 2 3 4

Figure 5.9: Overview of the used error estimation technique.

not occur in the constraints for the current patch anymore. The final weights
are given as

w̃(p, q) =

{
β · w(p, q) if w(p, q) > δ

0 otherwise
, (5.15)

where δ is a small threshold value and β scales the overall importance of the
patch constraints. The weights w̃(p, q) are the diagonal entries of the diagonal
matrix Dp.

5.3.3 Error estimation using sparse error estimates

Because the reconstructed image is the result of an iterative least squares opti-
mization, estimating the mean squared error is hard. Applying SURE does not
seem to be possible, since this would require the computation of the differen-
tial of the filter. We ended up using the simple error estimation technique by
Bauszat et al. [BEEM15].

This technique is specially made for error estimation in denoising of Monte
Carlo rendered images. Figure 5.9 gives an overview of the error estimation
technique. The idea is to first compute a number of candidate filters using
different filter parameters. Based on these candidate filters, a sparse set of
locations is generated, where a higher quality radiance estimate is computed
by putting more samples in these pixels (step 1). These high-quality pixels
are called filter caches. The sparse reference pixels are then used to compute
a sparse error estimate for each candidate filter, by computing the squared
difference between the sparse reference pixels and the candidate filter pixels
(step 2). The sparse error estimates are then interpolated over the whole image
to get an error estimate in each pixel (step 3). A filter selection map is then
computed by selecting the locally best filter using the interpolated error (step
4).

The cache locations are selected based on the variance over the candidate
filters: a pixel with very different values in each candidate filter needs a correct
error estimation, while a pixel which has pretty much the same value in all
candidate filters is less critical. Also, pixels with a lower variance in the unbiased
Monte Carlo estimate should be selected more likely, since these will give a more
reliable radiance estimate if sampled more. The probability density of the cache
positions is defined on the set of all pixel locations Ω as

f(p) =
fF (p)fV (p)∑
p∈Ω fF (p)fV (p)

, (5.16)

5.3. DENOISING USING SUBSPACE PROJECTIONS 53

where fF (p) is the variance over all candidate filters in pixel p and fV (p) is
defined as

fV (p) = e−
Var[p]
2σr . (5.17)

The term Var[p] is the variance of the Monte Carlo estimate in pixel p, averaged
over the color channels of pixel p. We estimate the variance using the two-buffer
variance. The constant σr is set to 0.15.

Only selecting caches using f(p) can potentially leave larger regions without
any caches. Bauszat et al. [BEEM15] therefore propose to generate a fraction
of the cache locations using 2D Poisson-disc sampling. Poisson-disc sampling is
a way of generating evenly distributed pseudo-random points. We use simple
jittered sampling instead of Poisson-disc sampling, since we did not have a
fast Poisson-disc implementation at our disposal and jittered sampling produces
similar results.

The sparse error estimate is then interpolated by computing a Delaunay
triangulation of the sparse locations and linearly interpolating the error over
the triangles. The Delaunay triangulation algorithm computes a high-quality
triangulation of the cache locations by maximizing the minimal triangle angles.
Triangles with one or more very small angles are considered bad, since they
can give very uneven interpolation results. Bauszat et al. [BEEM15] found
the linear interpolation using the Delaunay triangulation to be just as good as
more complicated interpolations. We also tried to interpolate the error using
our patch constraints. The patch constraints can be used to interpolate the
sparse error by optimizing for a solution equal to the sparse error pixels in the
cache locations and close to a projection onto the feature subspace in all other
pixels. This did however not give a significant quality increase over the linear
interpolation and we thus ended up not using this idea. We do not use the graph
cut based filter selection proposed by Bauszat et al. [BEEM15], because we
found the seams in the optimal filter combination to be visually unproblematic.

5.3.4 Implementation using CUDA

We implemented our denoising algorithm on the GPU using CUDA. In the first
step, the non-zero entries of the constraint matrix A need to be calculated. This
requires computing the SVD of the feature vectors at each pixel. We used code
by Moon et al. [MCY14] to achieve this. The code is based on the algorithm
presented by Nash [Nas90]. Aside from the orthogonalization of the feature
vectors, computing the constraints is straightforward.

The majority of computation time in our filtering algorithm is spent on
solving the least squares problem. Our implementation is based on the Poisson
solver written by Tero Karras for G-MLT [LKL+13]. This code is written in
CUDA and is fairly optimized. Because the solver requires the computation
of reductions over the whole image, we also used CUDA to implement our
algorithm. Halide currently does not support fast parallel reductions on the
GPU.

Like the original Poisson solver, our implementation uses the conjugate gra-
dient (CG) method to efficiently solve our optimization problem. The conjugate
gradient method iteratively solves a linear system Cx = d, where C ∈ Rn×n
is symmetric positive-definite. The CG method is guaranteed to give the ex-
act solution after n steps, but can also be used with much less steps to get an

5.3. DENOISING USING SUBSPACE PROJECTIONS 54

approximate solution.
To solve our least squares problem, we need to find the solution to the

normal equation ATAx = AT b. The matrix ATA is symmetric and positive-
definite and therefore the conjugate gradient method can be applied. In the
iteratively reweighted least squares (IRLS) algorithm, we need to repeatedly
solve equation systems of the form ATW 2Ax = ATW 2b. The CG algorithm is
then:

CGSolve(A, b,W, x0, cgIter)

1 r0 = ATW 2b−ATW 2Ax0

2 p0 = r0

3 for i = 1 to cgIter
4 p̃ = ATW 2Api
5 α = (rTi ri)/(p

T
i p̃)

6 xi+1 = xi + αpi
7 ri+1 = ri − αp̃
8 β = (rTi+1ri+1)/(rTi ri)
9 pi+1 = ri+1 + βpi

10 return xi+1

The matrix A and the vector b are given from our least squares problem,
W is the IRLS weighting matrix, x0 is a suitable initial guess of the solution
(we use the base image for this) and cgIter is the number of iterations of the
solver. We will not go into the derivation and geometric interpretation of the
CG method, a good overview is given by Shewchuk [She94].

The most expensive step in the algorithm is the computation of the sparse
matrix-vector product in line 4. The performance of this operation is limited by
memory access, since all non-zero matrix elements need to be loaded. For our
constraint matrix A, it is beneficial to precompute the matrix product ATW 2A.
For a patch radius of 2, the product has about seven times less non-zero elements
than the matrix A itself. This reduces the time required to read matrix elements
for the computation of the matrix-vector product. The performance increase due
to the faster matrix-vector multiplication outweighs the cost of precomputing
the sparse matrix product.

We implemented all matrix operations manually in CUDA. The regular
structures of our sparse matrices allow to not use any index arrays and only
load the non-zero values from memory. As the algorithm is limited by memory
bandwidth, this is a very important optimization which directly translates into
performance. We furthermore use shared memory and coalesced memory access
patterns to achieve good performance.

We use a fixed number of conjugate gradient iterations, but it would also
be possible to return earlier from the algorithm if it already has converged
sufficiently. The convergence speed of the conjugate gradient algorithm depends
on the root of the condition number of the matrix ATW 2A. The condition
number can be defined as the quotient of the largest and smallest eigenvalues.
If it is close to one, the matrix is close to the identity matrix. Using our patch
constraints, the condition number can get significantly larger than in the original
Poisson problem and the algorithm can suffer from slow convergence. We thus
use a default of 500 conjugate gradient iterations, while the original Poisson
solver only uses 50 iterations. A typical solution to this problem is to resort

5.4. RESULTS 55

to the preconditioned conjugate gradient method. The idea is to multiply the
constraint matrix by an invertible matrix M such that the condition number
gets smaller and the algorithm converges faster. We did not attempt this, since
finding a good preconditioner can be quite challenging. The algorithm could
probably be significantly sped up using a suitable preconditioner.

5.4 Results

We integrated our filtering pipeline into the Mitsuba renderer [Jak10], on top
of the implementation of G-BDPT [MRK+14]. We compute three different
candidate filters with varying values for kc, kf and β. We set kc to 0.5, 4 and
8 and kf to 2, 8 and 8. The weight multiplier β is set to 0.5, 1 and 2. The
NL-means patch radius is set to 2, the weight threshold δ to 10−11 and α to 0.5
for all candidate filters.

The samples needed to compute the sparse error estimates are subtracted
from the samples available per pixel. This means that the total number of
samples does not change with our method. Overall, our filtering method takes
about half a minute to filter a 1 mega-pixel image on a Nvidia GTX Titan X
GPU. The largest part of this time is spent on the computation of the three
candidate filters. The cost for the Delaunay triangulation and interpolation is
negligible.

In the following, we show several test scenes filtered using our algorithm
and compare our reconstruction method to the result of the unbiased L2- and
the biased L1-reconstruction. With our current parameter settings, our method
consistently outperforms the L1-reconstruction by a factor of two to four.

5.4. RESULTS 56

(a) Filter output

L2: Full: 1.458
Inset: 3.335

L1: Full: 1.750
Inset: 3.786

Ours: Full: 0.501
Inset: 1.532

Reference

(b) Detail comparison and MSE. All MSE values have been multiplied by 102.

Figure 5.10: Result of our algorithm using the Bathroom scene at 128 spp.

5.4. RESULTS 57

(a) Filter output

L2: Full: 0.716
Inset: 4.321

L1: Full: 0.604
Inset: 4.210

Ours: Full: 0.289
Inset: 0.992

Reference

(b) Detail comparison and MSE. All MSE values have been multiplied by 102.

Figure 5.11: Result of our algorithm using the Bookshelf scene at 64 spp.

5.4. RESULTS 58

(a) Filter output

L2: Full: 10.436
Inset: 3.427

L1: Full: 7.566
Inset: 5.246

Ours: Full: 2.319
Inset: 0.831

Reference

(b) Detail comparison and MSE. All MSE values have been multiplied by 102.

Figure 5.12: Result of our algorithm using the Boxes scene at 32 spp.

5.4. RESULTS 59

(a) Filter output

L2: Full: 2.899
Inset: 4.437

L1: Full: 3.366
Inset: 4.978

Ours: Full: 1.056
Inset: 1.011

Reference

(b) Detail comparison and MSE. All MSE values have been multiplied by 102.

Figure 5.13: Result of our algorithm using the Kitchen scene at 128 spp.

5.4. RESULTS 60

(a) Filter output

L2: Full: 1.332
Inset: 1.884

L1: Full: 2.448
Inset: 2.281

Ours: Full: 0.624
Inset: 1.136

Reference

(b) Detail comparison and MSE. All MSE values have been multiplied by 102.

Figure 5.14: Result of our algorithm using the Sponza scene at 16 spp.

Chapter 6

Conclusions

6.1 Working with Halide

We successfully implemented two different state-of-the-art denoising algorithms
using Halide. For both algorithms we provide a sophisticated GPU as well as
a simple CPU implementation. We were able to beat the performance of the
existing implementations of both algorithms. The implementations of the two
algorithms amount to a total of over 1400 lines of Halide code.

Halide does many things very well, but there are also a few downsides.
Even though already in a usable state, Halide is still a fairly new language.
Throughout working on this thesis, we encountered a variety of different bugs
in the Halide framework. The bugs ranged from minor issues to more severe
ones. At one point we had the problem, that Halide was not allocating the
properly sized buffer on the GPU. Some of the Halide debug outputs did not
even correctly show the size of the buffer that Halide internally allocated, which
made it quite hard to locate the issue. We also had the automatic storage folding
fail multiple times, which means that the allocated buffers were much larger than
needed and often did not fit into memory. As already mentioned earlier, there
is no way to manually control storage folding. A possible improvement to this
would be to somehow allow the programmer to manually force Halide to fold
a certain buffer. Not working storage folding can be a big obstacle in writing
efficient code. Luckily, all the severe bugs we reported to the Halide developers,
including storage folding bugs, were fixed within a matter of days.

As every new technology, Halide also does suffer from a lack of publicly
available source code and libraries, especially for numerical computations. This
can be an issue when working on the GPU, where it is not easily possible to call
external C code from within Halide.

Since Halide, even though allowing for many low-level tweaks, is still an
abstraction of the hardware, there is no access to some special platform specific
commands. This is always the trade-off of new programming languages, which
introduce a new level of abstraction on the hardware, and should be considered
before using Halide. On the GPU, we cannot use multiple streams, textures and
atomic operations.

As promised, Halide allows to quickly explore different schedules and to eas-
ily target different platforms, without having to rewrite the algorithm itself.

6.2. DENOISING FOR GRADIENT-DOMAIN RENDERING 62

Optimizing code is much easier using Halide than using raw C++. In our appli-
cations, we found the benefit of working with Halide bigger when writing CPU
code than when writing GPU code. The code we wrote using Halide to run on
the CPU typically had a considerably more complex schedule than hand-written
CPU code would have had. The Halide GPU code in contrast was a bit closer to
”standard” GPU code. This is obviously also a matter of personal experience.
Someone with more experience in writing fast CPU code would probably find
the difference between their hand-written code and a fast Halide schedule to be
smaller.

The functional paradigm of Halide seems to work very well for many image
processing operations. Halide is typically very expressive and comes with little
boilerplate code. As soon as complex schedules are involved, Halide code is
much more readable than equivalent C++ code. This also makes Halide code
less error prone. The seamless integration within existing C++ projects is also
an advantage. The active support from the Halide developers and the continuous
development of the Halide language are also very valuable.

In its current state, Halide is certainly not a general replacement for CUDA
or OpenCL. The uncertainty coming with bugs, especially in the area of storage
folding, is simply too big at the moment. Also some of the GPU features
which are currently missing can be very important in some applications. The
parallel reductions used in the conjugate gradient method could currently not be
implemented efficiently in Halide. These issues make Halide not the first choice
if deadlines are tight and the code only needs to run on a very limited number of
machines. However, if portability to many different platforms is important and
the limitations of Halide do not matter, it should seriously be considered. In
these use cases, the benefits of Halide can outweigh the cost of fixing a few minor
bugs in it. There are many frameworks which can be used to write portable
image processing code, for example OpenCV [Bra00]. As far as we know, there
is none other than Halide which both enables the programmer to write very
fast code and still target different platforms without rewriting large parts of the
algorithm.

6.2 Denoising for gradient-domain rendering

We introduced a new denoising algorithm for gradient-domain rendering and
also showed that it can be implemented efficiently using CUDA. We integrated
our algorithm into the Mitsuba renderer. Our reconstruction outperforms the
existing L1-reconstruction by a significant factor. There are still many areas
where the algorithm could be improved. By systematically optimizing the dif-
ferent filter parameters one could certainly get a slight overall improvement in
quality. Furthermore, it probably makes sense to prefilter the features similar
to RDFC. Even though truncating the SVD removes some of the noise from
the feature subspace, there is still noise in the features which is not removed.
Especially on edges of objects, there can be quite some noise in the features.
Prefiltering would also allow to use noisy features, such as a caustic buffer, more
effectively. There is also potential for performance improvement in the overall
pipeline. Currently, all operations except the extended Poisson reconstruction
run on the CPU. There are some computations, which could easily be ported
to the GPU and are currently running on the CPU.

6.3. ACKNOWLEDGMENTS 63

It would also be interesting, to make the patch constraints more adaptive.
One idea would be to adjust the patch size of the constraints depending on
the image. Instead of adding a patch constraint to each pixel, one could cover
larger regions using less constraints. The method currently also does not explic-
itly handle animations. Extending the method into the time domain could be
problematic due to memory requirements, but could also improve the filtering
result. Finally, the convergence of the solver could possibly be improved using
preconditioning. Even though the filtering process is already reasonably fast, it
is still slower than many other denoising filters.

Besides denoising, it could also be interesting to explore other applications
of our patch constraints. As already mentioned, they could also be used to in-
terpolate sparse data. It would be interesting to try to apply them compressive
rendering [SD11]. The idea behind compressive rendering is to only render a
selection of pixels and interpolate the holes in the rendered image after render-
ing. We did some experiments in this direction using our patch constraints, but
did not thoroughly evaluate how well this could work in practice.

6.3 Acknowledgments

I would like to thank Prof. Matthias Zwicker for his ongoing support throughout
working on this thesis. He provided many ideas used in this thesis and always
found time to discuss technical questions. My sincere thanks also go to my
advisor, Marco Manzi, who spent countless hours discussing technical details
with me and also integrated our denoising algorithm into the Mitsuba renderer.

Next I would like to thank the developers of Halide for their support when
working with Halide. Andrew Adams answered many questions on Halide and
fixed all Halide bugs I reported in a very short amount of time.

Last but not least, I would like to thank my friends and family, who always
supported and encouraged me while working on this thesis.

Appendix A

Rader’s algorithm

Similar to Bluestein’s algorithm, Rader’s algorithm [Rad68] reformulates the
computation of the DFT using properties of the complex exponential terms.
The derivation is based on basic concepts from the theory of groups and fields,
but can also be understood without prior knowledge of these topics.

Let N be prime and x = (x0, . . . , xN−1) ∈ CN . By definition, the DFT
coefficients of the signal x are computed as

Xk =

N−1∑
n=0

xne
−2πikn/N . (A.1)

Because N is prime, the ring Z/NZ is a field and therefore the multiplicative
group (Z/NZ)∗ is cyclic and equals ((Z/NZ)\{0}, ·). In other words, there
exists a number g ∈ {2, . . . , N − 1} such that {gi mod N |i ∈ {1, . . . , N−1}} =
{1, . . . , N − 1}. This implies, that the map k 7→ gk mod N is a bijective map
of the set {1, . . . , N − 1} onto itself. Furthermore, the map k 7→ g−k mod N is
also bijective on the same set. Here, g−k mod N is simply the multiplicative
inverse of gk mod N in (Z/NZ)∗. The bijectivity of this second map is given
by the fact, that in a group, every element has a unique inverse. Using these
two maps, the definition of the DFT can be rewritten as a convolution. First,
we write the definition as:

Xk − x0 =

N−1∑
n=1

xne
−2πikn/N (A.2)

Then, we substitute g−r mod N = k and gq mod N = n, where q, r ∈
{1, . . . , N − 1} are uniquely determined by the bijections described previously.
Using g0 = gN−1 mod N , this gives the following equality:

Xg−r − x0 =

N−2∑
q=0

xgqe
−2πigqg−r/N =

N−2∑
q=0

xgqe
−2πig−(r−q)/N (A.3)

We assume, that the signal is N periodic, i.e. xk = xk mod N . The same
property holds for the exponential term. The DFT is now the cyclic convolution

of the sequences ak = xgk and bk = e−2πig−k/N . This uses the periodic behavior

65

of the exponential term e−2πig−k/N and the signal x. Note, that X0 cannot be
calculated this way and still is computed as:

X0 =

N−1∑
n=0

xn (A.4)

The cyclic convolution can now be calculated by applying the convolution
theorem to the two sequences of length N − 1. The required Fourier transforms
can be computed efficiently by using an existing FFT implementation, as N −1
is not prime. The Fourier transform of the sequence (b0, . . . , bN−2) can be
precomputed, as it does not depend on the signal. It is also possible, to apply
the algorithm recursively to deal with large prime factors, that could occur when
factoring N−1. If N−1 contains large prime factors, it can also be more efficient
to pad the sequences with zeros to a highly composite length N ′ ≥ 2N − 3.

List of Tables

3.1 RDFC benchmarks . 26

4.1 DDID benchmarks . 38

List of Figures

1.1 Noise produced by a digital camera 1
1.2 Noise in a rendered image . 2

2.1 Visualization of the rendering equation 7

3.1 High-level overview of the RDFC filter 13
3.2 NL-means distances visualization 16
3.3 Patch-wise extension of the NL-means filter 17
3.4 Symmetric weights . 18
3.5 Variance scaling . 19
3.6 Feature prefiltering . 20
3.7 RDFC results . 28

4.1 Filtering artifacts comparison . 30
4.2 Ringing . 32
4.3 DDID parameters . 35
4.4 DDID results . 39

5.1 Gradient-domain rendering overview 41
5.2 Shift mapping . 43
5.3 Comparison of the L2-reconstruction using different α values . . 44
5.4 Comparison of L2- and L1-reconstruction 45
5.5 Local vs. global Poisson solving 47
5.6 Patch constraints . 48
5.7 Orthogonalization of features using SVD 49
5.8 Effect of thresholding patch constraint weights 51
5.9 Error estimation . 52
5.10 Results for Bathroom scene at 128 spp 56
5.11 Results for Bookshelf scene at 64 spp 57
5.12 Results for Boxes scene at 32 spp 58
5.13 Results for Kitchen scene at 128 spp 59
5.14 Results for Sponza scene at 16 spp 60

Bibliography

[BCCZ08] Bhat, Pravin ; Curless, Brian ; Cohen, Michael ; Zitnick,
C. L.: Fourier Analysis of the 2D Screened Poisson Equation for
Gradient Domain Problems. In: Proceedings of the 10th European
Conference on Computer Vision: Part II, 2008, S. 114–128

[BCM05] Buades, Antoni ; Coll, Bartomeu ; Morel, Jean-Michel: A
Review of Image Denoising Algorithms, with a New One. In: Mul-
tiscale Modeling & Simulation 4 (2005), Nr. 2, S. 490–530

[BEEM15] Bauszat, Pablo ; Eisemann, Martin ; Eisemann, Elmar ; Mag-
nor, Marcus: General and Robust Error Estimation and Recon-
struction for Monte Carlo Rendering. In: Computer Graphics Fo-
rum 34 (2015), Nr. 2, S. 597–608

[BL07] Blu, Thierry ; Luisier, Florian: The SURE-LET Approach to
Image Denoising. In: IEEE Transactions on Image Processing 16
(2007), Nr. 11, S. 2778–2786

[Blu70] Bluestein, Leo: A linear filtering approach to the computation of
discrete Fourier transform. In: IEEE Transactions on Audio and
Electroacoustics 18 (1970), Nr. 4, S. 451–455

[Bra00] Bradski, G.: OpenCV Library. In: Dr. Dobb’s Journal of Soft-
ware Tools (2000)

[DFKE07] Dabov, Kostadin ; Foi, Alessandro ; Katkovnik, Vladimir ;
Egiazarian, Karen: Image Denoising by Sparse 3-D Transform-
Domain Collaborative Filtering. In: IEEE Transactions on Image
Processing 16 (2007), Nr. 8, S. 2080–2095

[EA06] Elad, Michael ; Aharon, Michal: Image Denoising Via Sparse
and Redundant Representations Over Learned Dictionaries. In:
IEEE Transactions on Image Processing 15 (2006), Nr. 12, S. 3736–
3745

[FJ05] Frigo, Matteo ; Johnson, Steven G.: The Design and Implemen-
tation of FFTW3. In: Proceedings of the IEEE 93 (2005), Nr. 2,
S. 216–231

[GLD+08] Govindaraju, Naga K. ; Lloyd, Brandon ; Dotsenko, Yuri ;
Smith, Burton ; Manferdelli, John: High Performance Discrete
Fourier Transforms on Graphics Processors. In: SC ’08: Proceed-
ings of the 2008 ACM/IEEE Conference on Supercomputing, 2008

BIBLIOGRAPHY 69

[Jak10] Jakob, Wenzel: Mitsuba renderer. 2010 http://www.

mitsuba-renderer.org

[JM12] Jakob, Wenzel ; Marschner, Steve: Manifold exploration. In:
ACM Transactions on Graphics 31 (2012), Nr. 4, S. 1–13

[Kaj86] Kajiya, James T.: The Rendering Equation. In: SIGGRAPH
Comput. Graph. 20 (1986), Nr. 4, S. 143–150

[KMA+15] Kettunen, Markus ; Manzi, Marco ; Aittala, Miika ; Lehti-
nen, Jaakko ; Durand, Frédo ; Zwicker, Matthias: Gradient-
Domain Path Tracing. In: ACM Transactions on Graphics, to
appear (2015)

[KZ13] Knaus, Claude ; Zwicker, Matthias: Dual-domain image denois-
ing. In: 20th IEEE International Conference on Image Processing
(ICIP), 2013, S. 440–444

[KZ15] Knaus, Claude ; Zwicker, Matthias: Dual-Domain Filtering. In:
SIAM Journal on Imaging Sciences (2015)

[LA04] Lattner, Chris ; Adve, Vikram: LLVM: A compilation frame-
work for lifelong program analysis & transformation. In: Inter-
national Symposium on Code Generation and Optimization, 2004,
2004, S. 75–86

[LKL+13] Lehtinen, Jaakko ; Karras, Tero ; Laine, Samuli ; Aittala,
Miika ; Durand, Frédo ; Aila, Timo: Gradient-domain metropo-
lis light transport. In: ACM Transactions on Graphics 32 (2013),
Nr. 4

[LWC12] Li, Tzu-Mao ; Wu, Yu-Ting ; Chuang, Yung-Yu: SURE-based
optimization for adaptive sampling and reconstruction. In: ACM
Transactions on Graphics 31 (2012), Nr. 6

[MCY14] Moon, Bochang ; Carr, Nathan ; Yoon, Sung-Eui: Adaptive
Rendering Based on Weighted Local Regression. In: ACM Trans-
actions on Graphics 33 (2014), Nr. 5, S. 1–14

[MKA+15] Manzi, Marco ; Kettunen, Markus ; Aittala, Miika ; Lehti-
nen, Jaakko ; Durand, Frédo ; Zwicker, Matthias: Gradient-
Domain Bidirectional Path Tracing. In: Eurographics Symposium
on Rendering - Experimental Ideas & Implementations, 2015

[MRK+14] Manzi, Marco ; Rousselle, Fabrice ; Kettunen, Markus ;
Lehtinen, Jaakko ; Zwicker, Matthias: Improved sampling for
gradient-domain metropolis light transport. In: ACM Transactions
on Graphics 33 (2014), Nr. 6, S. 1–12

[Nas90] Nash, John C.: Compact numerical methods for computers: Lin-
ear algebra and function minimisation. 2nd ed. 1990

[PH10] Pharr, Matt ; Humphreys, Greg: Physically based rendering:
From theory to implementation. 2nd ed. 2010

http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org

BIBLIOGRAPHY 70

[Rad68] Rader, Charles M.: Discrete Fourier transforms when the number
of data samples is prime. In: Proceedings of the IEEE 56 (1968),
Nr. 6, S. 1107–1108

[RKAP+12] Ragan-Kelley, Jonathan ; Adams, Andrew ; Paris, Sylvain ;
Levoy, Marc ; Amarasinghe, Saman ; Durand, Frédo: De-
coupling algorithms from schedules for easy optimization of image
processing pipelines. In: ACM Transactions on Graphics 31 (2012),
Nr. 4, S. 1–12

[RKZ12] Rousselle, Fabrice ; Knaus, Claude ; Zwicker, Matthias:
Adaptive rendering with non-local means filtering. In: ACM Trans-
actions on Graphics 31 (2012), Nr. 6, S. 195:1–195:11

[RMZ13] Rousselle, Fabrice ; Manzi, Marco ; Zwicker, Matthias: Ro-
bust Denoising using Feature and Color Information. In: Computer
Graphics Forum 32 (2013), Nr. 7, S. 121–130

[SD11] Sen, Pradeep ; Darabi, Soheil: Compressive Rendering: A Ren-
dering Application of Compressed Sensing. In: IEEE Transactions
on Visualization and Computer Graphics 17 (2011), Nr. 4, S. 487–
499

[She94] Shewchuk, Jonathan R.: An Introduction to the Conjugate Gra-
dient Method Without the Agonizing Pain. 1994

[Smi07] Smith, Julius O.: Mathematics of the discrete Fourier transform
(DFT): With audio applicaitons. 2nd ed. 2007

[Ste81] Stein, Charles M.: Estimation of the Mean of a Multivariate
Normal Distribution. In: The Annals of Statistics 9 (1981), Nr. 6,
S. 1135–1151

[TM98] Tomasi, Carlo ; Manduchi, Roberto: Bilateral filtering for gray
and color images. In: IEEE 6th International Conference on Com-
puter Vision, 1998, S. 839–846

[Vea98] Veach, Eric: Robust Monte Carlo Methods for Light Transport
Simulation. 1998

[VF08] Van den Berg, Ewout ; Friedlander, Michael P.: Probing the
Pareto frontier for basis pursuit solutions. In: SIAM Journal on
Scientific Computing 31 (2008), Nr. 2, S. 890–912

[ZJL+15] Zwicker, Matthias ; Jarosz, Wojciech ; Lehtinen, Jaakko ;
Moon, Bochang ; Ramamoorthi, Ravi ; Rousselle, Fabrice ;
Sen, Pradeep ; Soler, Cyril ; Yoon, Sung-Eui: Recent Advances
in Adaptive Sampling and Reconstruction for Monte Carlo Render-
ing. In: Computer Graphics Forum 34 (2015), Nr. 2, S. 667–681

E r k l ä r u n g

gemäss Art. 28 Abs. 2 RSL 05

Name/Vorname: ..

Matrikelnummer: ..

Studiengang: ……………………………………………………………………………

Bachelor Master Dissertation

Titel der Arbeit: ..

..

..

LeiterIn der Arbeit: ..

..

Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die

angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen

entnommen wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls

der Senat gemäss Artikel 36 Absatz 1 Buchstabe o des Gesetztes vom 5. September 1996

über die Universität zum Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.

..

Ort/Datum

...

Unterschrift

	Introduction
	Motivation
	Goals and contributions
	Thesis structure

	Background
	Mathematics
	Statistical tools
	Discrete Fourier transform

	Monte Carlo rendering
	Halide

	Robust Denoising using Feature and Color Information
	Overview
	Non-local means color weights
	The non-local means filter
	Non-uniform variance
	Patch-wise weight computation
	Symmetric weights
	Variance estimation and two-buffer filtering

	Cross-bilateral feature weights
	Feature prefiltering
	Feature weights

	Stein's unbiased risk estimate
	Definition
	Application to RDFC

	The RDFC algorithm
	Implementation using Halide and results

	Dual-Domain Image Denoising
	Overview
	Dual-Domain Filtering
	Noise estimation in the spatial domain
	Noise re-estimation in the frequency domain
	Formulation as a guided filter

	The DDID algorithm
	Implementation using Halide and results

	Denoising for Gradient-Domain Path Tracing
	Overview
	Gradient-domain path tracing
	Denoising using subspace projections
	Extending the Poisson problem by patch constraints
	Patch constraint weights
	Error estimation using sparse error estimates
	Implementation using CUDA

	Results

	Conclusions
	Working with Halide
	Denoising for gradient-domain rendering
	Acknowledgments

	Rader's algorithm
	List of Tables
	List of Figures
	Bibliography

